src/CTT/CTT.thy
author paulson
Thu, 09 Feb 2006 12:20:02 +0100
changeset 18985 bc23b1d1ddea
parent 17782 b3846df9d643
child 19761 5cd82054c2c6
permissions -rw-r--r--
blacklist tweaks

(*  Title:      CTT/CTT.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge
*)

header {* Constructive Type Theory *}

theory CTT
imports Pure
begin

typedecl i
typedecl t
typedecl o

consts
  (*Types*)
  F         :: "t"
  T         :: "t"          (*F is empty, T contains one element*)
  contr     :: "i=>i"
  tt        :: "i"
  (*Natural numbers*)
  N         :: "t"
  succ      :: "i=>i"
  rec       :: "[i, i, [i,i]=>i] => i"
  (*Unions*)
  inl       :: "i=>i"
  inr       :: "i=>i"
  when      :: "[i, i=>i, i=>i]=>i"
  (*General Sum and Binary Product*)
  Sum       :: "[t, i=>t]=>t"
  fst       :: "i=>i"
  snd       :: "i=>i"
  split     :: "[i, [i,i]=>i] =>i"
  (*General Product and Function Space*)
  Prod      :: "[t, i=>t]=>t"
  (*Types*)
  "+"       :: "[t,t]=>t"           (infixr 40)
  (*Equality type*)
  Eq        :: "[t,i,i]=>t"
  eq        :: "i"
  (*Judgements*)
  Type      :: "t => prop"          ("(_ type)" [10] 5)
  Eqtype    :: "[t,t]=>prop"        ("(_ =/ _)" [10,10] 5)
  Elem      :: "[i, t]=>prop"       ("(_ /: _)" [10,10] 5)
  Eqelem    :: "[i,i,t]=>prop"      ("(_ =/ _ :/ _)" [10,10,10] 5)
  Reduce    :: "[i,i]=>prop"        ("Reduce[_,_]")
  (*Types*)

  (*Functions*)
  lambda    :: "(i => i) => i"      (binder "lam " 10)
  "`"       :: "[i,i]=>i"           (infixl 60)
  (*Natural numbers*)
  "0"       :: "i"                  ("0")
  (*Pairing*)
  pair      :: "[i,i]=>i"           ("(1<_,/_>)")

syntax
  "@PROD"   :: "[idt,t,t]=>t"       ("(3PROD _:_./ _)" 10)
  "@SUM"    :: "[idt,t,t]=>t"       ("(3SUM _:_./ _)" 10)
  "@-->"    :: "[t,t]=>t"           ("(_ -->/ _)" [31,30] 30)
  "@*"      :: "[t,t]=>t"           ("(_ */ _)" [51,50] 50)

translations
  "PROD x:A. B" => "Prod(A, %x. B)"
  "A --> B"     => "Prod(A, %_. B)"
  "SUM x:A. B"  => "Sum(A, %x. B)"
  "A * B"       => "Sum(A, %_. B)"

print_translation {*
  [("Prod", dependent_tr' ("@PROD", "@-->")),
   ("Sum", dependent_tr' ("@SUM", "@*"))]
*}


syntax (xsymbols)
  "@-->"    :: "[t,t]=>t"           ("(_ \<longrightarrow>/ _)" [31,30] 30)
  "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
  Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
  "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
  "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
  "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)

syntax (HTML output)
  "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
  Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
  Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
  "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
  "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
  "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)

axioms

  (*Reduction: a weaker notion than equality;  a hack for simplification.
    Reduce[a,b] means either that  a=b:A  for some A or else that "a" and "b"
    are textually identical.*)

  (*does not verify a:A!  Sound because only trans_red uses a Reduce premise
    No new theorems can be proved about the standard judgements.*)
  refl_red: "Reduce[a,a]"
  red_if_equal: "a = b : A ==> Reduce[a,b]"
  trans_red: "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"

  (*Reflexivity*)

  refl_type: "A type ==> A = A"
  refl_elem: "a : A ==> a = a : A"

  (*Symmetry*)

  sym_type:  "A = B ==> B = A"
  sym_elem:  "a = b : A ==> b = a : A"

  (*Transitivity*)

  trans_type:   "[| A = B;  B = C |] ==> A = C"
  trans_elem:   "[| a = b : A;  b = c : A |] ==> a = c : A"

  equal_types:  "[| a : A;  A = B |] ==> a : B"
  equal_typesL: "[| a = b : A;  A = B |] ==> a = b : B"

  (*Substitution*)

  subst_type:   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
  subst_typeL:  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"

  subst_elem:   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
  subst_elemL:
    "[| a=c : A;  !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"


  (*The type N -- natural numbers*)

  NF: "N type"
  NI0: "0 : N"
  NI_succ: "a : N ==> succ(a) : N"
  NI_succL:  "a = b : N ==> succ(a) = succ(b) : N"

  NE:
   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
   ==> rec(p, a, %u v. b(u,v)) : C(p)"

  NEL:
   "[| p = q : N;  a = c : C(0);
      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |]
   ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)"

  NC0:
   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
   ==> rec(0, a, %u v. b(u,v)) = a : C(0)"

  NC_succ:
   "[| p: N;  a: C(0);
       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>
   rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))"

  (*The fourth Peano axiom.  See page 91 of Martin-Lof's book*)
  zero_ne_succ:
    "[| a: N;  0 = succ(a) : N |] ==> 0: F"


  (*The Product of a family of types*)

  ProdF:  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type"

  ProdFL:
   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==>
   PROD x:A. B(x) = PROD x:C. D(x)"

  ProdI:
   "[| A type;  !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)"

  ProdIL:
   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==>
   lam x. b(x) = lam x. c(x) : PROD x:A. B(x)"

  ProdE:  "[| p : PROD x:A. B(x);  a : A |] ==> p`a : B(a)"
  ProdEL: "[| p=q: PROD x:A. B(x);  a=b : A |] ==> p`a = q`b : B(a)"

  ProdC:
   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==>
   (lam x. b(x)) ` a = b(a) : B(a)"

  ProdC2:
   "p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)"


  (*The Sum of a family of types*)

  SumF:  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type"
  SumFL:
    "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)"

  SumI:  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A. B(x)"
  SumIL: "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)"

  SumE:
    "[| p: SUM x:A. B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
    ==> split(p, %x y. c(x,y)) : C(p)"

  SumEL:
    "[| p=q : SUM x:A. B(x);
       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|]
    ==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)"

  SumC:
    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
    ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)"

  fst_def:   "fst(a) == split(a, %x y. x)"
  snd_def:   "snd(a) == split(a, %x y. y)"


  (*The sum of two types*)

  PlusF:   "[| A type;  B type |] ==> A+B type"
  PlusFL:  "[| A = C;  B = D |] ==> A+B = C+D"

  PlusI_inl:   "[| a : A;  B type |] ==> inl(a) : A+B"
  PlusI_inlL: "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"

  PlusI_inr:   "[| A type;  b : B |] ==> inr(b) : A+B"
  PlusI_inrL: "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"

  PlusE:
    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));
                !!y. y:B ==> d(y): C(inr(y)) |]
    ==> when(p, %x. c(x), %y. d(y)) : C(p)"

  PlusEL:
    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));
                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |]
    ==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)"

  PlusC_inl:
    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));
              !!y. y:B ==> d(y): C(inr(y)) |]
    ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))"

  PlusC_inr:
    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));
              !!y. y:B ==> d(y): C(inr(y)) |]
    ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))"


  (*The type Eq*)

  EqF:    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
  EqFL: "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
  EqI: "a = b : A ==> eq : Eq(A,a,b)"
  EqE: "p : Eq(A,a,b) ==> a = b : A"

  (*By equality of types, can prove C(p) from C(eq), an elimination rule*)
  EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"

  (*The type F*)

  FF: "F type"
  FE: "[| p: F;  C type |] ==> contr(p) : C"
  FEL:  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"

  (*The type T
     Martin-Lof's book (page 68) discusses elimination and computation.
     Elimination can be derived by computation and equality of types,
     but with an extra premise C(x) type x:T.
     Also computation can be derived from elimination. *)

  TF: "T type"
  TI: "tt : T"
  TE: "[| p : T;  c : C(tt) |] ==> c : C(p)"
  TEL: "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
  TC: "p : T ==> p = tt : T"

ML {* use_legacy_bindings (the_context ()) *}

end