(* Title: Pure/General/graph.ML
ID: $Id$
Author: Markus Wenzel and Stefan Berghofer, TU Muenchen
Directed graphs.
*)
signature GRAPH =
sig
type key
type 'a T
exception UNDEF of key
exception DUP of key
exception DUPS of key list
val empty: 'a T
val keys: 'a T -> key list
val dest: 'a T -> (key * key list) list
val minimals: 'a T -> key list
val maximals: 'a T -> key list
val map_nodes: ('a -> 'b) -> 'a T -> 'b T
val get_node: 'a T -> key -> 'a (*exception UNDEF*)
val map_node: key -> ('a -> 'a) -> 'a T -> 'a T
val imm_preds: 'a T -> key -> key list
val imm_succs: 'a T -> key -> key list
val all_preds: 'a T -> key list -> key list
val all_succs: 'a T -> key list -> key list
val strong_conn: 'a T -> key list list
val find_paths: 'a T -> key * key -> key list list
val new_node: key * 'a -> 'a T -> 'a T (*exception DUP*)
val del_nodes: key list -> 'a T -> 'a T (*exception UNDEF*)
val is_edge: 'a T -> key * key -> bool
val add_edge: key * key -> 'a T -> 'a T
val del_edge: key * key -> 'a T -> 'a T
val merge: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T (*exception DUPS*)
exception CYCLES of key list list
val add_edge_acyclic: key * key -> 'a T -> 'a T (*exception CYCLES*)
val add_deps_acyclic: key * key list -> 'a T -> 'a T (*exception CYCLES*)
val merge_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T (*exception CYCLES*)
val add_edge_trans_acyclic: key * key -> 'a T -> 'a T (*exception CYCLES*)
val merge_trans_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T (*exception CYCLES*)
end;
functor GraphFun(Key: KEY): GRAPH =
struct
(* keys *)
type key = Key.key;
val eq_key = equal EQUAL o Key.ord;
infix mem_key;
val op mem_key = gen_mem eq_key;
val remove_key = remove eq_key;
(* tables and sets of keys *)
structure Table = TableFun(Key);
type keys = unit Table.table;
val empty_keys = Table.empty: keys;
infix mem_keys;
fun x mem_keys tab = is_some (Table.lookup (tab: keys, x));
infix ins_keys;
fun x ins_keys tab = Table.insert (K true) (x, ()) (tab: keys);
(* graphs *)
datatype 'a T = Graph of ('a * (key list * key list)) Table.table;
exception UNDEF of key;
exception DUP = Table.DUP;
exception DUPS = Table.DUPS;
val empty = Graph Table.empty;
fun keys (Graph tab) = Table.keys tab;
fun dest (Graph tab) = map (fn (x, (_, (_, succs))) => (x, succs)) (Table.dest tab);
fun minimals (Graph tab) = Table.fold (fn (m, (_, ([], _))) => cons m | _ => I) tab [];
fun maximals (Graph tab) = Table.fold (fn (m, (_, (_, []))) => cons m | _ => I) tab [];
fun get_entry (Graph tab) x =
(case Table.lookup (tab, x) of
SOME entry => entry
| NONE => raise UNDEF x);
fun map_entry x f (G as Graph tab) = Graph (Table.update ((x, f (get_entry G x)), tab));
(* nodes *)
fun map_nodes f (Graph tab) = Graph (Table.map (fn (i, ps) => (f i, ps)) tab);
fun get_node G = #1 o get_entry G;
fun map_node x f = map_entry x (fn (i, ps) => (f i, ps));
(* reachability *)
(*nodes reachable from xs -- topologically sorted for acyclic graphs*)
fun reachable next xs =
let
fun reach ((R, rs), x) =
if x mem_keys R then (R, rs)
else apsnd (cons x) (reachs ((x ins_keys R, rs), next x))
and reachs R_xs = Library.foldl reach R_xs;
in foldl_map (reach o apfst (rpair [])) (empty_keys, xs) end;
(*immediate*)
fun imm_preds G = #1 o #2 o get_entry G;
fun imm_succs G = #2 o #2 o get_entry G;
(*transitive*)
fun all_preds G = List.concat o snd o reachable (imm_preds G);
fun all_succs G = List.concat o snd o reachable (imm_succs G);
(*strongly connected components; see: David King and John Launchbury,
"Structuring Depth First Search Algorithms in Haskell"*)
fun strong_conn G = filter_out null (snd (reachable (imm_preds G)
(List.concat (rev (snd (reachable (imm_succs G) (keys G)))))));
(* paths *)
fun find_paths G (x, y) =
let
val (X, _) = reachable (imm_succs G) [x];
fun paths ps p =
if not (null ps) andalso eq_key (p, x) then [p :: ps]
else if p mem_keys X andalso not (p mem_key ps)
then List.concat (map (paths (p :: ps)) (imm_preds G p))
else [];
in paths [] y end;
(* nodes *)
fun new_node (x, info) (Graph tab) =
Graph (Table.update_new ((x, (info, ([], []))), tab));
fun del_nodes xs (Graph tab) =
Graph (tab
|> fold Table.delete xs
|> Table.map (fn (i, (preds, succs)) =>
(i, (fold remove_key xs preds, fold remove_key xs succs))));
(* edges *)
fun is_edge G (x, y) = y mem_key imm_succs G x handle UNDEF _ => false;
fun add_edge (x, y) G =
if is_edge G (x, y) then G
else
G |> map_entry y (fn (i, (preds, succs)) => (i, (x :: preds, succs)))
|> map_entry x (fn (i, (preds, succs)) => (i, (preds, y :: succs)));
fun del_edge (x, y) G =
if is_edge G (x, y) then
G |> map_entry y (fn (i, (preds, succs)) => (i, (remove_key x preds, succs)))
|> map_entry x (fn (i, (preds, succs)) => (i, (preds, remove_key y succs)))
else G;
fun diff_edges G1 G2 =
List.concat (dest G1 |> map (fn (x, ys) => ys |> List.mapPartial (fn y =>
if is_edge G2 (x, y) then NONE else SOME (x, y))));
fun edges G = diff_edges G empty;
(* merge *)
fun gen_merge add eq (Graph tab1, G2 as Graph tab2) =
let
fun eq_node ((i1, _), (i2, _)) = eq (i1, i2);
fun no_edges (i, _) = (i, ([], []));
in fold add (edges G2) (Graph (Table.merge eq_node (tab1, Table.map no_edges tab2))) end;
fun merge eq GG = gen_merge add_edge eq GG;
(* maintain acyclic graphs *)
exception CYCLES of key list list;
fun add_edge_acyclic (x, y) G =
if is_edge G (x, y) then G
else
(case find_paths G (y, x) of
[] => add_edge (x, y) G
| cycles => raise CYCLES (map (cons x) cycles));
fun add_deps_acyclic (y, xs) = fold (fn x => add_edge_acyclic (x, y)) xs;
fun merge_acyclic eq GG = gen_merge add_edge_acyclic eq GG;
(* maintain transitive acyclic graphs *)
fun add_edge_trans_acyclic (x, y) G =
add_edge_acyclic (x, y) G |>
fold add_edge (Library.product (all_preds G [x]) (all_succs G [y]));
fun merge_trans_acyclic eq (G1, G2) =
merge_acyclic eq (G1, G2) |>
fold add_edge_trans_acyclic (diff_edges G1 G2 @ diff_edges G2 G1);
end;
(*graphs indexed by strings*)
structure Graph = GraphFun(type key = string val ord = string_ord);