(* Title: ZF/ZF_Base.thy
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
Copyright 1993 University of Cambridge
*)
section \<open>Base of Zermelo-Fraenkel Set Theory\<close>
theory ZF_Base
imports FOL
begin
subsection \<open>Signature\<close>
declare [[eta_contract = false]]
typedecl i
instance i :: "term" ..
axiomatization mem :: "[i, i] \<Rightarrow> o" (infixl \<open>\<in>\<close> 50) \<comment> \<open>membership relation\<close>
and zero :: "i" (\<open>0\<close>) \<comment> \<open>the empty set\<close>
and Pow :: "i \<Rightarrow> i" \<comment> \<open>power sets\<close>
and Inf :: "i" \<comment> \<open>infinite set\<close>
and Union :: "i \<Rightarrow> i" (\<open>\<Union>_\<close> [90] 90)
and PrimReplace :: "[i, [i, i] \<Rightarrow> o] \<Rightarrow> i"
abbreviation not_mem :: "[i, i] \<Rightarrow> o" (infixl \<open>\<notin>\<close> 50) \<comment> \<open>negated membership relation\<close>
where "x \<notin> y \<equiv> \<not> (x \<in> y)"
subsection \<open>Bounded Quantifiers\<close>
definition Ball :: "[i, i \<Rightarrow> o] \<Rightarrow> o"
where "Ball(A, P) \<equiv> \<forall>x. x\<in>A \<longrightarrow> P(x)"
definition Bex :: "[i, i \<Rightarrow> o] \<Rightarrow> o"
where "Bex(A, P) \<equiv> \<exists>x. x\<in>A \<and> P(x)"
syntax
"_Ball" :: "[pttrn, i, o] \<Rightarrow> o" (\<open>(\<open>indent=3 notation=\<open>binder \<forall>\<in>\<close>\<close>\<forall>_\<in>_./ _)\<close> 10)
"_Bex" :: "[pttrn, i, o] \<Rightarrow> o" (\<open>(\<open>indent=3 notation=\<open>binder \<exists>\<in>\<close>\<close>\<exists>_\<in>_./ _)\<close> 10)
syntax_consts
"_Ball" \<rightleftharpoons> Ball and
"_Bex" \<rightleftharpoons> Bex
translations
"\<forall>x\<in>A. P" \<rightleftharpoons> "CONST Ball(A, \<lambda>x. P)"
"\<exists>x\<in>A. P" \<rightleftharpoons> "CONST Bex(A, \<lambda>x. P)"
subsection \<open>Variations on Replacement\<close>
(* Derived form of replacement, restricting P to its functional part.
The resulting set (for functional P) is the same as with
PrimReplace, but the rules are simpler. *)
definition Replace :: "[i, [i, i] \<Rightarrow> o] \<Rightarrow> i"
where "Replace(A,P) \<equiv> PrimReplace(A, \<lambda>x y. (\<exists>!z. P(x,z)) \<and> P(x,y))"
syntax
"_Replace" :: "[pttrn, pttrn, i, o] \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix relational replacement\<close>\<close>{_ ./ _ \<in> _, _})\<close>)
translations
"{y. x\<in>A, Q}" \<rightleftharpoons> "CONST Replace(A, \<lambda>x y. Q)"
(* Functional form of replacement -- analgous to ML's map functional *)
definition RepFun :: "[i, i \<Rightarrow> i] \<Rightarrow> i"
where "RepFun(A,f) \<equiv> {y . x\<in>A, y=f(x)}"
syntax
"_RepFun" :: "[i, pttrn, i] \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix functional replacement\<close>\<close>{_ ./ _ \<in> _})\<close> [51,0,51])
translations
"{b. x\<in>A}" \<rightleftharpoons> "CONST RepFun(A, \<lambda>x. b)"
(* Separation and Pairing can be derived from the Replacement
and Powerset Axioms using the following definitions. *)
definition Collect :: "[i, i \<Rightarrow> o] \<Rightarrow> i"
where "Collect(A,P) \<equiv> {y . x\<in>A, x=y \<and> P(x)}"
syntax
"_Collect" :: "[pttrn, i, o] \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix set comprehension\<close>\<close>{_ \<in> _ ./ _})\<close>)
translations
"{x\<in>A. P}" \<rightleftharpoons> "CONST Collect(A, \<lambda>x. P)"
subsection \<open>General union and intersection\<close>
definition Inter :: "i \<Rightarrow> i" (\<open>\<Inter>_\<close> [90] 90)
where "\<Inter>(A) \<equiv> { x\<in>\<Union>(A) . \<forall>y\<in>A. x\<in>y}"
syntax
"_UNION" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>binder \<Union>\<in>\<close>\<close>\<Union>_\<in>_./ _)\<close> 10)
"_INTER" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>binder \<Inter>\<in>\<close>\<close>\<Inter>_\<in>_./ _)\<close> 10)
syntax_consts
"_UNION" == Union and
"_INTER" == Inter
translations
"\<Union>x\<in>A. B" == "CONST Union({B. x\<in>A})"
"\<Inter>x\<in>A. B" == "CONST Inter({B. x\<in>A})"
subsection \<open>Finite sets and binary operations\<close>
(*Unordered pairs (Upair) express binary union/intersection and cons;
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
definition Upair :: "[i, i] \<Rightarrow> i"
where "Upair(a,b) \<equiv> {y. x\<in>Pow(Pow(0)), (x=0 \<and> y=a) | (x=Pow(0) \<and> y=b)}"
definition Subset :: "[i, i] \<Rightarrow> o" (infixl \<open>\<subseteq>\<close> 50) \<comment> \<open>subset relation\<close>
where subset_def: "A \<subseteq> B \<equiv> \<forall>x\<in>A. x\<in>B"
definition Diff :: "[i, i] \<Rightarrow> i" (infixl \<open>-\<close> 65) \<comment> \<open>set difference\<close>
where "A - B \<equiv> { x\<in>A . \<not>(x\<in>B) }"
definition Un :: "[i, i] \<Rightarrow> i" (infixl \<open>\<union>\<close> 65) \<comment> \<open>binary union\<close>
where "A \<union> B \<equiv> \<Union>(Upair(A,B))"
definition Int :: "[i, i] \<Rightarrow> i" (infixl \<open>\<inter>\<close> 70) \<comment> \<open>binary intersection\<close>
where "A \<inter> B \<equiv> \<Inter>(Upair(A,B))"
definition cons :: "[i, i] \<Rightarrow> i"
where "cons(a,A) \<equiv> Upair(a,a) \<union> A"
definition succ :: "i \<Rightarrow> i"
where "succ(i) \<equiv> cons(i, i)"
nonterminal "is"
syntax
"" :: "i \<Rightarrow> is" (\<open>_\<close>)
"_Enum" :: "[i, is] \<Rightarrow> is" (\<open>_,/ _\<close>)
"_Finset" :: "is \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix set enumeration\<close>\<close>{_})\<close>)
translations
"{x, xs}" == "CONST cons(x, {xs})"
"{x}" == "CONST cons(x, 0)"
subsection \<open>Axioms\<close>
(* ZF axioms -- see Suppes p.238
Axioms for Union, Pow and Replace state existence only,
uniqueness is derivable using extensionality. *)
axiomatization
where
extension: "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A" and
Union_iff: "A \<in> \<Union>(C) \<longleftrightarrow> (\<exists>B\<in>C. A\<in>B)" and
Pow_iff: "A \<in> Pow(B) \<longleftrightarrow> A \<subseteq> B" and
(*We may name this set, though it is not uniquely defined.*)
infinity: "0 \<in> Inf \<and> (\<forall>y\<in>Inf. succ(y) \<in> Inf)" and
(*This formulation facilitates case analysis on A.*)
foundation: "A = 0 \<or> (\<exists>x\<in>A. \<forall>y\<in>x. y\<notin>A)" and
(*Schema axiom since predicate P is a higher-order variable*)
replacement: "(\<forall>x\<in>A. \<forall>y z. P(x,y) \<and> P(x,z) \<longrightarrow> y = z) \<Longrightarrow>
b \<in> PrimReplace(A,P) \<longleftrightarrow> (\<exists>x\<in>A. P(x,b))"
subsection \<open>Definite descriptions -- via Replace over the set "1"\<close>
definition The :: "(i \<Rightarrow> o) \<Rightarrow> i" (binder \<open>THE \<close> 10)
where the_def: "The(P) \<equiv> \<Union>({y . x \<in> {0}, P(y)})"
definition If :: "[o, i, i] \<Rightarrow> i" (\<open>(\<open>notation=\<open>mixfix if then else\<close>\<close>if (_)/ then (_)/ else (_))\<close> [10] 10)
where if_def: "if P then a else b \<equiv> THE z. P \<and> z=a | \<not>P \<and> z=b"
abbreviation (input)
old_if :: "[o, i, i] \<Rightarrow> i" (\<open>if '(_,_,_')\<close>)
where "if(P,a,b) \<equiv> If(P,a,b)"
subsection \<open>Ordered Pairing\<close>
(* this "symmetric" definition works better than {{a}, {a,b}} *)
definition Pair :: "[i, i] \<Rightarrow> i"
where "Pair(a,b) \<equiv> {{a,a}, {a,b}}"
definition fst :: "i \<Rightarrow> i"
where "fst(p) \<equiv> THE a. \<exists>b. p = Pair(a, b)"
definition snd :: "i \<Rightarrow> i"
where "snd(p) \<equiv> THE b. \<exists>a. p = Pair(a, b)"
definition split :: "[[i, i] \<Rightarrow> 'a, i] \<Rightarrow> 'a::{}" \<comment> \<open>for pattern-matching\<close>
where "split(c) \<equiv> \<lambda>p. c(fst(p), snd(p))"
nonterminal "tuple_args"
syntax
"" :: "i \<Rightarrow> tuple_args" (\<open>_\<close>)
"_Tuple_args" :: "[i, tuple_args] \<Rightarrow> tuple_args" (\<open>_,/ _\<close>)
"_Tuple" :: "[i, tuple_args] \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix tuple enumeration\<close>\<close>\<langle>_,/ _\<rangle>)\<close>)
translations
"\<langle>x, y, z\<rangle>" == "\<langle>x, \<langle>y, z\<rangle>\<rangle>"
"\<langle>x, y\<rangle>" == "CONST Pair(x, y)"
(* Patterns -- extends pre-defined type "pttrn" used in abstractions *)
nonterminal patterns
syntax
"_pattern" :: "patterns \<Rightarrow> pttrn" (\<open>\<langle>_\<rangle>\<close>)
"" :: "pttrn \<Rightarrow> patterns" (\<open>_\<close>)
"_patterns" :: "[pttrn, patterns] \<Rightarrow> patterns" (\<open>_,/_\<close>)
syntax_consts
"_pattern" "_patterns" == split
translations
"\<lambda>\<langle>x,y,zs\<rangle>.b" == "CONST split(\<lambda>x \<langle>y,zs\<rangle>.b)"
"\<lambda>\<langle>x,y\<rangle>.b" == "CONST split(\<lambda>x y. b)"
definition Sigma :: "[i, i \<Rightarrow> i] \<Rightarrow> i"
where "Sigma(A,B) \<equiv> \<Union>x\<in>A. \<Union>y\<in>B(x). {\<langle>x,y\<rangle>}"
abbreviation cart_prod :: "[i, i] \<Rightarrow> i" (infixr \<open>\<times>\<close> 80) \<comment> \<open>Cartesian product\<close>
where "A \<times> B \<equiv> Sigma(A, \<lambda>_. B)"
subsection \<open>Relations and Functions\<close>
(*converse of relation r, inverse of function*)
definition converse :: "i \<Rightarrow> i"
where "converse(r) \<equiv> {z. w\<in>r, \<exists>x y. w=\<langle>x,y\<rangle> \<and> z=\<langle>y,x\<rangle>}"
definition domain :: "i \<Rightarrow> i"
where "domain(r) \<equiv> {x. w\<in>r, \<exists>y. w=\<langle>x,y\<rangle>}"
definition range :: "i \<Rightarrow> i"
where "range(r) \<equiv> domain(converse(r))"
definition field :: "i \<Rightarrow> i"
where "field(r) \<equiv> domain(r) \<union> range(r)"
definition relation :: "i \<Rightarrow> o" \<comment> \<open>recognizes sets of pairs\<close>
where "relation(r) \<equiv> \<forall>z\<in>r. \<exists>x y. z = \<langle>x,y\<rangle>"
definition "function" :: "i \<Rightarrow> o" \<comment> \<open>recognizes functions; can have non-pairs\<close>
where "function(r) \<equiv> \<forall>x y. \<langle>x,y\<rangle> \<in> r \<longrightarrow> (\<forall>y'. \<langle>x,y'\<rangle> \<in> r \<longrightarrow> y = y')"
definition Image :: "[i, i] \<Rightarrow> i" (infixl \<open>``\<close> 90) \<comment> \<open>image\<close>
where image_def: "r `` A \<equiv> {y \<in> range(r). \<exists>x\<in>A. \<langle>x,y\<rangle> \<in> r}"
definition vimage :: "[i, i] \<Rightarrow> i" (infixl \<open>-``\<close> 90) \<comment> \<open>inverse image\<close>
where vimage_def: "r -`` A \<equiv> converse(r)``A"
(* Restrict the relation r to the domain A *)
definition restrict :: "[i, i] \<Rightarrow> i"
where "restrict(r,A) \<equiv> {z \<in> r. \<exists>x\<in>A. \<exists>y. z = \<langle>x,y\<rangle>}"
(* Abstraction, application and Cartesian product of a family of sets *)
definition Lambda :: "[i, i \<Rightarrow> i] \<Rightarrow> i"
where lam_def: "Lambda(A,b) \<equiv> {\<langle>x,b(x)\<rangle>. x\<in>A}"
definition "apply" :: "[i, i] \<Rightarrow> i" (infixl \<open>`\<close> 90) \<comment> \<open>function application\<close>
where "f`a \<equiv> \<Union>(f``{a})"
definition Pi :: "[i, i \<Rightarrow> i] \<Rightarrow> i"
where "Pi(A,B) \<equiv> {f\<in>Pow(Sigma(A,B)). A\<subseteq>domain(f) \<and> function(f)}"
abbreviation function_space :: "[i, i] \<Rightarrow> i" (infixr \<open>\<rightarrow>\<close> 60) \<comment> \<open>function space\<close>
where "A \<rightarrow> B \<equiv> Pi(A, \<lambda>_. B)"
(* binder syntax *)
syntax
"_PROD" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>mixfix \<Prod>\<in>\<close>\<close>\<Prod>_\<in>_./ _)\<close> 10)
"_SUM" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>mixfix \<Sum>\<in>\<close>\<close>\<Sum>_\<in>_./ _)\<close> 10)
"_lam" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>mixfix \<lambda>\<in>\<close>\<close>\<lambda>_\<in>_./ _)\<close> 10)
syntax_consts
"_PROD" == Pi and
"_SUM" == Sigma and
"_lam" == Lambda
translations
"\<Prod>x\<in>A. B" == "CONST Pi(A, \<lambda>x. B)"
"\<Sum>x\<in>A. B" == "CONST Sigma(A, \<lambda>x. B)"
"\<lambda>x\<in>A. f" == "CONST Lambda(A, \<lambda>x. f)"
subsection \<open>ASCII syntax\<close>
notation (ASCII)
cart_prod (infixr \<open>*\<close> 80) and
Int (infixl \<open>Int\<close> 70) and
Un (infixl \<open>Un\<close> 65) and
function_space (infixr \<open>->\<close> 60) and
Subset (infixl \<open><=\<close> 50) and
mem (infixl \<open>:\<close> 50) and
not_mem (infixl \<open>\<not>:\<close> 50)
syntax (ASCII)
"_Ball" :: "[pttrn, i, o] \<Rightarrow> o" (\<open>(\<open>indent=3 notation=\<open>binder ALL:\<close>\<close>ALL _:_./ _)\<close> 10)
"_Bex" :: "[pttrn, i, o] \<Rightarrow> o" (\<open>(\<open>indent=3 notation=\<open>binder EX:\<close>\<close>EX _:_./ _)\<close> 10)
"_Collect" :: "[pttrn, i, o] \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix set comprehension\<close>\<close>{_: _ ./ _})\<close>)
"_Replace" :: "[pttrn, pttrn, i, o] \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix relational replacement\<close>\<close>{_ ./ _: _, _})\<close>)
"_RepFun" :: "[i, pttrn, i] \<Rightarrow> i" (\<open>(\<open>indent=1 notation=\<open>mixfix functional replacement\<close>\<close>{_ ./ _: _})\<close> [51,0,51])
"_UNION" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>binder UN:\<close>\<close>UN _:_./ _)\<close> 10)
"_INTER" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>binder INT:\<close>\<close>INT _:_./ _)\<close> 10)
"_PROD" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>binder PROD:\<close>\<close>PROD _:_./ _)\<close> 10)
"_SUM" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>binder SUM:\<close>\<close>SUM _:_./ _)\<close> 10)
"_lam" :: "[pttrn, i, i] \<Rightarrow> i" (\<open>(\<open>indent=3 notation=\<open>binder lam:\<close>\<close>lam _:_./ _)\<close> 10)
"_Tuple" :: "[i, tuple_args] \<Rightarrow> i" (\<open><(_,/ _)>\<close>)
"_pattern" :: "patterns \<Rightarrow> pttrn" (\<open><_>\<close>)
subsection \<open>Substitution\<close>
(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *)
lemma subst_elem: "\<lbrakk>b\<in>A; a=b\<rbrakk> \<Longrightarrow> a\<in>A"
by (erule ssubst, assumption)
subsection\<open>Bounded universal quantifier\<close>
lemma ballI [intro!]: "\<lbrakk>\<And>x. x\<in>A \<Longrightarrow> P(x)\<rbrakk> \<Longrightarrow> \<forall>x\<in>A. P(x)"
by (simp add: Ball_def)
lemmas strip = impI allI ballI
lemma bspec [dest?]: "\<lbrakk>\<forall>x\<in>A. P(x); x: A\<rbrakk> \<Longrightarrow> P(x)"
by (simp add: Ball_def)
(*Instantiates x first: better for automatic theorem proving?*)
lemma rev_ballE [elim]:
"\<lbrakk>\<forall>x\<in>A. P(x); x\<notin>A \<Longrightarrow> Q; P(x) \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
by (simp add: Ball_def, blast)
lemma ballE: "\<lbrakk>\<forall>x\<in>A. P(x); P(x) \<Longrightarrow> Q; x\<notin>A \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
by blast
(*Used in the datatype package*)
lemma rev_bspec: "\<lbrakk>x: A; \<forall>x\<in>A. P(x)\<rbrakk> \<Longrightarrow> P(x)"
by (simp add: Ball_def)
(*Trival rewrite rule; @{term"(\<forall>x\<in>A.P)\<longleftrightarrow>P"} holds only if A is nonempty!*)
lemma ball_triv [simp]: "(\<forall>x\<in>A. P) \<longleftrightarrow> ((\<exists>x. x\<in>A) \<longrightarrow> P)"
by (simp add: Ball_def)
(*Congruence rule for rewriting*)
lemma ball_cong [cong]:
"\<lbrakk>A=A'; \<And>x. x\<in>A' \<Longrightarrow> P(x) \<longleftrightarrow> P'(x)\<rbrakk> \<Longrightarrow> (\<forall>x\<in>A. P(x)) \<longleftrightarrow> (\<forall>x\<in>A'. P'(x))"
by (simp add: Ball_def)
lemma atomize_ball:
"(\<And>x. x \<in> A \<Longrightarrow> P(x)) \<equiv> Trueprop (\<forall>x\<in>A. P(x))"
by (simp only: Ball_def atomize_all atomize_imp)
lemmas [symmetric, rulify] = atomize_ball
and [symmetric, defn] = atomize_ball
subsection\<open>Bounded existential quantifier\<close>
lemma bexI [intro]: "\<lbrakk>P(x); x: A\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. P(x)"
by (simp add: Bex_def, blast)
(*The best argument order when there is only one @{term"x\<in>A"}*)
lemma rev_bexI: "\<lbrakk>x\<in>A; P(x)\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. P(x)"
by blast
(*Not of the general form for such rules. The existential quanitifer becomes universal. *)
lemma bexCI: "\<lbrakk>\<forall>x\<in>A. \<not>P(x) \<Longrightarrow> P(a); a: A\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. P(x)"
by blast
lemma bexE [elim!]: "\<lbrakk>\<exists>x\<in>A. P(x); \<And>x. \<lbrakk>x\<in>A; P(x)\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
by (simp add: Bex_def, blast)
(*We do not even have @{term"(\<exists>x\<in>A. True) \<longleftrightarrow> True"} unless @{term"A" is nonempty\<And>*)
lemma bex_triv [simp]: "(\<exists>x\<in>A. P) \<longleftrightarrow> ((\<exists>x. x\<in>A) \<and> P)"
by (simp add: Bex_def)
lemma bex_cong [cong]:
"\<lbrakk>A=A'; \<And>x. x\<in>A' \<Longrightarrow> P(x) \<longleftrightarrow> P'(x)\<rbrakk>
\<Longrightarrow> (\<exists>x\<in>A. P(x)) \<longleftrightarrow> (\<exists>x\<in>A'. P'(x))"
by (simp add: Bex_def cong: conj_cong)
subsection\<open>Rules for subsets\<close>
lemma subsetI [intro!]:
"(\<And>x. x\<in>A \<Longrightarrow> x\<in>B) \<Longrightarrow> A \<subseteq> B"
by (simp add: subset_def)
(*Rule in Modus Ponens style [was called subsetE] *)
lemma subsetD [elim]: "\<lbrakk>A \<subseteq> B; c\<in>A\<rbrakk> \<Longrightarrow> c\<in>B"
unfolding subset_def
apply (erule bspec, assumption)
done
(*Classical elimination rule*)
lemma subsetCE [elim]:
"\<lbrakk>A \<subseteq> B; c\<notin>A \<Longrightarrow> P; c\<in>B \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (simp add: subset_def, blast)
(*Sometimes useful with premises in this order*)
lemma rev_subsetD: "\<lbrakk>c\<in>A; A\<subseteq>B\<rbrakk> \<Longrightarrow> c\<in>B"
by blast
lemma contra_subsetD: "\<lbrakk>A \<subseteq> B; c \<notin> B\<rbrakk> \<Longrightarrow> c \<notin> A"
by blast
lemma rev_contra_subsetD: "\<lbrakk>c \<notin> B; A \<subseteq> B\<rbrakk> \<Longrightarrow> c \<notin> A"
by blast
lemma subset_refl [simp]: "A \<subseteq> A"
by blast
lemma subset_trans: "\<lbrakk>A\<subseteq>B; B\<subseteq>C\<rbrakk> \<Longrightarrow> A\<subseteq>C"
by blast
(*Useful for proving A\<subseteq>B by rewriting in some cases*)
lemma subset_iff:
"A\<subseteq>B \<longleftrightarrow> (\<forall>x. x\<in>A \<longrightarrow> x\<in>B)"
by auto
text\<open>For calculations\<close>
declare subsetD [trans] rev_subsetD [trans] subset_trans [trans]
subsection\<open>Rules for equality\<close>
(*Anti-symmetry of the subset relation*)
lemma equalityI [intro]: "\<lbrakk>A \<subseteq> B; B \<subseteq> A\<rbrakk> \<Longrightarrow> A = B"
by (rule extension [THEN iffD2], rule conjI)
lemma equality_iffI: "(\<And>x. x\<in>A \<longleftrightarrow> x\<in>B) \<Longrightarrow> A = B"
by (rule equalityI, blast+)
lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1]
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2]
lemma equalityE: "\<lbrakk>A = B; \<lbrakk>A\<subseteq>B; B\<subseteq>A\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (blast dest: equalityD1 equalityD2)
lemma equalityCE:
"\<lbrakk>A = B; \<lbrakk>c\<in>A; c\<in>B\<rbrakk> \<Longrightarrow> P; \<lbrakk>c\<notin>A; c\<notin>B\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (erule equalityE, blast)
lemma equality_iffD:
"A = B \<Longrightarrow> (\<And>x. x \<in> A \<longleftrightarrow> x \<in> B)"
by auto
subsection\<open>Rules for Replace -- the derived form of replacement\<close>
lemma Replace_iff:
"b \<in> {y. x\<in>A, P(x,y)} \<longleftrightarrow> (\<exists>x\<in>A. P(x,b) \<and> (\<forall>y. P(x,y) \<longrightarrow> y=b))"
unfolding Replace_def
by (rule replacement [THEN iff_trans], blast+)
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
lemma ReplaceI [intro]:
"\<lbrakk>P(x,b); x: A; \<And>y. P(x,y) \<Longrightarrow> y=b\<rbrakk> \<Longrightarrow>
b \<in> {y. x\<in>A, P(x,y)}"
by (rule Replace_iff [THEN iffD2], blast)
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
lemma ReplaceE:
"\<lbrakk>b \<in> {y. x\<in>A, P(x,y)};
\<And>x. \<lbrakk>x: A; P(x,b); \<forall>y. P(x,y)\<longrightarrow>y=b\<rbrakk> \<Longrightarrow> R
\<rbrakk> \<Longrightarrow> R"
by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)
(*As above but without the (generally useless) 3rd assumption*)
lemma ReplaceE2 [elim!]:
"\<lbrakk>b \<in> {y. x\<in>A, P(x,y)};
\<And>x. \<lbrakk>x: A; P(x,b)\<rbrakk> \<Longrightarrow> R
\<rbrakk> \<Longrightarrow> R"
by (erule ReplaceE, blast)
lemma Replace_cong [cong]:
"\<lbrakk>A=B; \<And>x y. x\<in>B \<Longrightarrow> P(x,y) \<longleftrightarrow> Q(x,y)\<rbrakk> \<Longrightarrow> Replace(A,P) = Replace(B,Q)"
apply (rule equality_iffI)
apply (simp add: Replace_iff)
done
subsection\<open>Rules for RepFun\<close>
lemma RepFunI: "a \<in> A \<Longrightarrow> f(a) \<in> {f(x). x\<in>A}"
by (simp add: RepFun_def Replace_iff, blast)
(*Useful for coinduction proofs*)
lemma RepFun_eqI [intro]: "\<lbrakk>b=f(a); a \<in> A\<rbrakk> \<Longrightarrow> b \<in> {f(x). x\<in>A}"
by (blast intro: RepFunI)
lemma RepFunE [elim!]:
"\<lbrakk>b \<in> {f(x). x\<in>A};
\<And>x.\<lbrakk>x\<in>A; b=f(x)\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow>
P"
by (simp add: RepFun_def Replace_iff, blast)
lemma RepFun_cong [cong]:
"\<lbrakk>A=B; \<And>x. x\<in>B \<Longrightarrow> f(x)=g(x)\<rbrakk> \<Longrightarrow> RepFun(A,f) = RepFun(B,g)"
by (simp add: RepFun_def)
lemma RepFun_iff [simp]: "b \<in> {f(x). x\<in>A} \<longleftrightarrow> (\<exists>x\<in>A. b=f(x))"
by (unfold Bex_def, blast)
lemma triv_RepFun [simp]: "{x. x\<in>A} = A"
by blast
subsection\<open>Rules for Collect -- forming a subset by separation\<close>
(*Separation is derivable from Replacement*)
lemma separation [simp]: "a \<in> {x\<in>A. P(x)} \<longleftrightarrow> a\<in>A \<and> P(a)"
by (auto simp: Collect_def)
lemma CollectI [intro!]: "\<lbrakk>a\<in>A; P(a)\<rbrakk> \<Longrightarrow> a \<in> {x\<in>A. P(x)}"
by simp
lemma CollectE [elim!]: "\<lbrakk>a \<in> {x\<in>A. P(x)}; \<lbrakk>a\<in>A; P(a)\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
by simp
lemma CollectD1: "a \<in> {x\<in>A. P(x)} \<Longrightarrow> a\<in>A" and CollectD2: "a \<in> {x\<in>A. P(x)} \<Longrightarrow> P(a)"
by auto
lemma Collect_cong [cong]:
"\<lbrakk>A=B; \<And>x. x\<in>B \<Longrightarrow> P(x) \<longleftrightarrow> Q(x)\<rbrakk>
\<Longrightarrow> Collect(A, \<lambda>x. P(x)) = Collect(B, \<lambda>x. Q(x))"
by (simp add: Collect_def)
subsection\<open>Rules for Unions\<close>
declare Union_iff [simp]
(*The order of the premises presupposes that C is rigid; A may be flexible*)
lemma UnionI [intro]: "\<lbrakk>B: C; A: B\<rbrakk> \<Longrightarrow> A: \<Union>(C)"
by auto
lemma UnionE [elim!]: "\<lbrakk>A \<in> \<Union>(C); \<And>B.\<lbrakk>A: B; B: C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
by auto
subsection\<open>Rules for Unions of families\<close>
(* @{term"\<Union>x\<in>A. B(x)"} abbreviates @{term"\<Union>({B(x). x\<in>A})"} *)
lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B(x)) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B(x))"
by blast
(*The order of the premises presupposes that A is rigid; b may be flexible*)
lemma UN_I: "\<lbrakk>a: A; b: B(a)\<rbrakk> \<Longrightarrow> b: (\<Union>x\<in>A. B(x))"
by force
lemma UN_E [elim!]:
"\<lbrakk>b \<in> (\<Union>x\<in>A. B(x)); \<And>x.\<lbrakk>x: A; b: B(x)\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
by blast
lemma UN_cong:
"\<lbrakk>A=B; \<And>x. x\<in>B \<Longrightarrow> C(x)=D(x)\<rbrakk> \<Longrightarrow> (\<Union>x\<in>A. C(x)) = (\<Union>x\<in>B. D(x))"
by simp
(*No "Addcongs [UN_cong]" because @{term\<Union>} is a combination of constants*)
(* UN_E appears before UnionE so that it is tried first, to avoid expensive
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge
the search space.*)
subsection\<open>Rules for the empty set\<close>
(*The set @{term"{x\<in>0. False}"} is empty; by foundation it equals 0
See Suppes, page 21.*)
lemma not_mem_empty [simp]: "a \<notin> 0"
using foundation by (best dest: equalityD2)
lemmas emptyE [elim!] = not_mem_empty [THEN notE]
lemma empty_subsetI [simp]: "0 \<subseteq> A"
by blast
lemma equals0I: "\<lbrakk>\<And>y. y\<in>A \<Longrightarrow> False\<rbrakk> \<Longrightarrow> A=0"
by blast
lemma equals0D [dest]: "A=0 \<Longrightarrow> a \<notin> A"
by blast
declare sym [THEN equals0D, dest]
lemma not_emptyI: "a\<in>A \<Longrightarrow> A \<noteq> 0"
by blast
lemma not_emptyE: "\<lbrakk>A \<noteq> 0; \<And>x. x\<in>A \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
by blast
subsection\<open>Rules for Inter\<close>
(*Not obviously useful for proving InterI, InterD, InterE*)
lemma Inter_iff: "A \<in> \<Inter>(C) \<longleftrightarrow> (\<forall>x\<in>C. A: x) \<and> C\<noteq>0"
by (force simp: Inter_def)
(* Intersection is well-behaved only if the family is non-empty! *)
lemma InterI [intro!]:
"\<lbrakk>\<And>x. x: C \<Longrightarrow> A: x; C\<noteq>0\<rbrakk> \<Longrightarrow> A \<in> \<Inter>(C)"
by (simp add: Inter_iff)
(*A "destruct" rule -- every B in C contains A as an element, but
A\<in>B can hold when B\<in>C does not! This rule is analogous to "spec". *)
lemma InterD [elim, Pure.elim]: "\<lbrakk>A \<in> \<Inter>(C); B \<in> C\<rbrakk> \<Longrightarrow> A \<in> B"
by (force simp: Inter_def)
(*"Classical" elimination rule -- does not require exhibiting @{term"B\<in>C"} *)
lemma InterE [elim]:
"\<lbrakk>A \<in> \<Inter>(C); B\<notin>C \<Longrightarrow> R; A\<in>B \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
by (auto simp: Inter_def)
subsection\<open>Rules for Intersections of families\<close>
(* @{term"\<Inter>x\<in>A. B(x)"} abbreviates @{term"\<Inter>({B(x). x\<in>A})"} *)
lemma INT_iff: "b \<in> (\<Inter>x\<in>A. B(x)) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B(x)) \<and> A\<noteq>0"
by (force simp add: Inter_def)
lemma INT_I: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b: B(x); A\<noteq>0\<rbrakk> \<Longrightarrow> b: (\<Inter>x\<in>A. B(x))"
by blast
lemma INT_E: "\<lbrakk>b \<in> (\<Inter>x\<in>A. B(x)); a: A\<rbrakk> \<Longrightarrow> b \<in> B(a)"
by blast
lemma INT_cong:
"\<lbrakk>A=B; \<And>x. x\<in>B \<Longrightarrow> C(x)=D(x)\<rbrakk> \<Longrightarrow> (\<Inter>x\<in>A. C(x)) = (\<Inter>x\<in>B. D(x))"
by simp
(*No "Addcongs [INT_cong]" because @{term\<Inter>} is a combination of constants*)
subsection\<open>Rules for Powersets\<close>
lemma PowI: "A \<subseteq> B \<Longrightarrow> A \<in> Pow(B)"
by (erule Pow_iff [THEN iffD2])
lemma PowD: "A \<in> Pow(B) \<Longrightarrow> A\<subseteq>B"
by (erule Pow_iff [THEN iffD1])
declare Pow_iff [iff]
lemmas Pow_bottom = empty_subsetI [THEN PowI] \<comment> \<open>\<^term>\<open>0 \<in> Pow(B)\<close>\<close>
lemmas Pow_top = subset_refl [THEN PowI] \<comment> \<open>\<^term>\<open>A \<in> Pow(A)\<close>\<close>
subsection\<open>Cantor's Theorem: There is no surjection from a set to its powerset.\<close>
(*The search is undirected. Allowing redundant introduction rules may
make it diverge. Variable b represents ANY map, such as
(lam x\<in>A.b(x)): A->Pow(A). *)
lemma cantor: "\<exists>S \<in> Pow(A). \<forall>x\<in>A. b(x) \<noteq> S"
by (best elim!: equalityCE del: ReplaceI RepFun_eqI)
end