src/HOL/Tools/svc_funcs.ML
author paulson
Mon, 02 Aug 1999 11:29:13 +0200
changeset 7145 c05373eebee3
child 7164 295882e50b7a
permissions -rw-r--r--
new files for the SVC link-up

(*  Title:      HOL/Tools/svc_funcs.ML
    ID:         $Id$
    Author:     Lawrence C Paulson
    Copyright   1999  University of Cambridge

Translation and abstraction functions for the interface to SVC

Based upon the work of Søren T. Heilmann
*)

(**TODO
   change Path.pack to File.sysify_path 
   move realT to hologic.ML**)

val realT = Type("RealDef.real",[]);



structure Svc =
struct
 val trace = ref false;

 datatype expr =
     bracketed_expr of expr
   | ref_def_expr of string * expr
   | ref_expr of string
   | typed_expr of Type * expr
   | buildin_expr of string * expr list
   | interp_expr of string * expr list
   | uninterp_expr of string * expr list
   | false_expr 
   | true_expr
   | distinct_expr of string
   | int_expr of int
   | rat_expr of int * int
 and Type = 
     simple_type of string
   | array_type of Type * Type
   | record_type of (expr * Type) list
   | bitvec_type of int;

 open BasisLibrary

 fun toString t =
     let fun signedInt i = 
	 if i < 0 then "-" ^ Int.toString (~i)
	 else Int.toString i
	 fun ut(simple_type s) = s ^ " "
	   | ut(array_type(t1, t2)) = "ARRAY " ^ (ut t1) ^ (ut t2)
	   | ut(record_type fl) = 
	     "RECORD" ^ 
	     (foldl (fn (a, (d, t)) => a ^ (ue d) ^ (ut t)) (" ", fl))
	   | ut(bitvec_type n) = "BITVEC " ^ (Int.toString n) ^ " "
	 and ue(bracketed_expr e) = "(" ^ (ue e) ^ ") "
	   | ue(ref_def_expr(r, e)) = "$" ^ r ^ ":" ^ (ue e)
	   | ue(ref_expr r) = "$" ^ r ^ " "
	   | ue(typed_expr(t, e)) = (ut t) ^ (ue e)
	   | ue(buildin_expr(s, l)) = 
	     "(" ^ s ^ (foldl (fn (a, b) => a ^ " " ^ (ue b)) ("", l)) ^ ") "
	   | ue(interp_expr(s, l)) = 
	     "{" ^ s ^ (foldl (fn (a, b) => a ^ " " ^ (ue b)) ("", l)) ^ "} "
	   | ue(uninterp_expr(s, l)) = 
	     "(" ^ s ^ (foldl (fn (a, b) => a ^ " " ^ (ue b)) ("", l)) ^ ") "
	   | ue(false_expr) = "FALSE "
	   | ue(true_expr) = "TRUE "
	   | ue(distinct_expr s) = "@" ^ s ^ " "
	   | ue(int_expr i) = (signedInt i) ^ " "
	   | ue(rat_expr(i, j)) = (signedInt i) ^ "|" ^ (signedInt j) ^ " "
     in
	 ue t
     end;

 fun valid e = 
  let val svc_home = getenv "SVC_HOME" 
      val svc_machine = getenv "SVC_MACHINE"
      val check_valid = if svc_home = ""
	                then error "Environment variable SVC_HOME not set"
			else if svc_machine = ""
	                then error "Environment variable SVC_MACHINE not set"
			else svc_home ^ "/" ^ svc_machine ^ "/bin/check_valid"
      val svc_input = toString e
      val _ = if !trace then writeln ("Calling SVC:\n" ^ svc_input) else ()
      val svc_input_file  = File.tmp_path (Path.basic "SVM_in");
      val svc_output_file = File.tmp_path (Path.basic "SVM_out");
      val _ = (File.write svc_input_file svc_input;
	       execute (check_valid ^ " -dump-result " ^ 
			Path.pack svc_output_file ^
			" " ^ Path.pack svc_input_file ^ 
			"> /dev/null 2>&1"))
      val svc_output = File.read svc_output_file
	               handle _ => error "SVC returned no output"
      val _ = if !trace then writeln ("SVC Returns:\n" ^ svc_output) else ()
  in
      String.isPrefix "VALID" svc_output
  end

 (*New exception constructor for passing arguments to the oracle*)
 exception OracleExn of term;

 (*Translate an Isabelle formula into an SVC expression
   pos ["positive"]: true if an assumption, false if a goal*)
 fun expr_of pos t =
  let
   val params = rename_wrt_term t (Term.strip_all_vars t)
   and body   = Term.strip_all_body t
   val parNames = rev (map #1 params)
   (*translation of a variable*)
   fun var (Free(a, _))     = uninterp_expr("F_" ^ a, [])
     | var (Var((a, 0), _)) = uninterp_expr(a, [])
     | var (Bound i)        = uninterp_expr("B_" ^ List.nth (parNames,i), [])
     | var (t $ Bound _)    = var t    (*removing a parameter from a Var*)
     | var t = raise OracleExn t;
   (*translation of a literal*)
   fun lit (Const("Numeral.number_of", _) $ w) = NumeralSyntax.dest_bin w
     | lit (Const("0", _)) = 0
     | lit (Const("0r", _)) = 0
     | lit (Const("1r", _)) = 1
   (*translation of a literal expression [no variables]*)
   fun litExp (Const("op +", T) $ x $ y) = (litExp x) + (litExp y)
     | litExp (Const("op -", T) $ x $ y) = (litExp x) - (litExp y)
     | litExp (Const("op *", T) $ x $ y) = (litExp x) * (litExp y)
     | litExp (Const("uminus", _) $ x) = ~(litExp x)
     | litExp t = lit t 
	       handle Match => raise OracleExn t
   (*translation of a real/rational expression*)
   fun suc t = interp_expr("+", [int_expr 1, t])
   fun tm (Const("Suc", T) $ x) = suc (tm x)
     | tm (Const("op +", T) $ x $ y) = interp_expr("+", [tm x, tm y])
     | tm (Const("op -", _) $ x $ y) = 
	 interp_expr("+", [tm x, interp_expr("*", [int_expr ~1, tm y])])
     | tm (Const("op *", _) $ x $ y) = interp_expr("*", [tm x, tm y])
     | tm (Const("op /", _) $ x $ y) = 
	 interp_expr("*", [tm x, rat_expr(1, litExp y)])
     | tm (Const("uminus", _) $ x) = interp_expr("*", [int_expr ~1, tm x])
     | tm t = int_expr (lit t) 
	      handle Match => var t
   (*translation of a formula*)
   and fm pos (Const("op &", _) $ p $ q) =  
	   buildin_expr("AND", [fm pos p, fm pos q])
     | fm pos (Const("op |", _) $ p $ q) =  
	   buildin_expr("OR", [fm pos p, fm pos q])
     | fm pos (Const("op -->", _) $ p $ q) =  
	   buildin_expr("=>", [fm (not pos) p, fm pos q])
     | fm pos (Const("Not", _) $ p) =  
	   buildin_expr("NOT", [fm (not pos) p])
     | fm pos (Const("True", _)) = true_expr
     | fm pos (Const("False", _)) = false_expr
     | fm pos (Const("op =", Type ("fun", [T,_])) $ x $ y) = 
	   if T = HOLogic.boolT then buildin_expr("=", [fm pos x, fm pos y])
	   else 
	   let val tx = tm x and ty = tm y
               in if pos orelse T = realT then
		      buildin_expr("=", [tx, ty])
		  else 
		      buildin_expr("AND", 
				   [buildin_expr("<", [tx, suc ty]), 
				    buildin_expr("<", [ty, suc tx])])
           end
       (*inequalities: possible types are nat, int, real*)
     | fm pos (Const("op <",  Type ("fun", [T,_])) $ x $ y) = 
	   if not pos orelse T = realT then
	       buildin_expr("<", [tm x, tm y])
           else buildin_expr("<=", [suc (tm x), tm y])
     | fm pos (Const("op <=",  Type ("fun", [T,_])) $ x $ y) = 
	   if pos orelse T = realT then
	       buildin_expr("<=", [tm x, tm y])
           else buildin_expr("<", [tm x, suc (tm y)])
     | fm pos t = var t;
     (*entry point, and translation of a meta-formula*)
     fun mt pos ((c as Const("Trueprop", _)) $ p) = fm pos p
       | mt pos ((c as Const("==>", _)) $ p $ q) = 
	   buildin_expr("=>", [mt (not pos) p, mt pos q])
       | mt pos t = fm pos t  (*it might be a formula*)
  in 
     mt pos body 
  end;


 (*Generalize an Isabelle formula, replacing by Vars
   all subterms not intelligible to SVC.  *)
 fun abstract t =
  let
   val params = Term.strip_all_vars t
   and body   = Term.strip_all_body t
   val Us = map #2 params
   val nPar = length params
   val vname = ref "V_a"
   val pairs = ref ([] : (term*term) list)
   fun insert t = 
       let val T = fastype_of t
	   val v = Unify.combound (Var ((!vname,0), Us--->T),
				   0, nPar)
       in  vname := bump_string (!vname); 
	   pairs := (t, v) :: !pairs;
	   v
       end;
   fun replace t = 
       case t of
	   Free _  => t  (*but not existing Vars, lest the names clash*)
	 | Bound _ => t
	 | _ => (case gen_assoc (op aconv) (!pairs, t) of
		     Some v => v
		   | None   => insert t)
   (*abstraction of a real/rational expression*)
   fun rat ((c as Const("op +", _)) $ x $ y) = c $ (rat x) $ (rat y)
     | rat ((c as Const("op -", _)) $ x $ y) = c $ (rat x) $ (rat y)
     | rat ((c as Const("op /", _)) $ x $ y) = c $ (rat x) $ (rat y)
     | rat ((c as Const("op *", _)) $ x $ y) = c $ (rat x) $ (rat y)
     | rat ((c as Const("uminus", _)) $ x) = c $ (rat x)
     | rat ((c as Const("0r", _))) = c
     | rat ((c as Const("1r", _))) = c 
     | rat (t as Const("Numeral.number_of", _) $ w) = t
     | rat t = replace t
   (*abstraction of an integer expression: no div, mod*)
   fun int ((c as Const("op +", _)) $ x $ y) = c $ (int x) $ (int y)
     | int ((c as Const("op -", _)) $ x $ y) = c $ (int x) $ (int y)
     | int ((c as Const("op *", _)) $ x $ y) = c $ (int x) $ (int y)
     | int ((c as Const("uminus", _)) $ x) = c $ (int x)
     | int (t as Const("Numeral.number_of", _) $ w) = t
     | int t = replace t
   (*abstraction of a natural number expression: no minus*)
   fun nat ((c as Const("op +", _)) $ x $ y) = c $ (nat x) $ (nat y)
     | nat ((c as Const("op *", _)) $ x $ y) = c $ (nat x) $ (nat y)
     | nat ((c as Const("Suc", _)) $ x) = c $ (nat x)
     | nat (t as Const("0", _)) = t
     | nat (t as Const("Numeral.number_of", _) $ w) = t
     | nat t = replace t
   (*abstraction of a relation: =, <, <=*)
   fun rel (T, c $ x $ y) =
	   if T = realT then c $ (rat x) $ (rat y)
	   else if T = HOLogic.intT then c $ (int x) $ (int y)
	   else if T = HOLogic.natT then c $ (nat x) $ (nat y)
	   else if T = HOLogic.boolT then c $ (fm x) $ (fm y)
	   else replace (c $ x $ y)   (*non-numeric comparison*)
   (*abstraction of a formula*)
   and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q)
     | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q)
     | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q)
     | fm ((c as Const("Not", _)) $ p) = c $ (fm p)
     | fm ((c as Const("True", _))) = c
     | fm ((c as Const("False", _))) = c
     | fm (t as Const("op =", Type ("fun", [T,_])) $ x $ y) = rel (T, t)
     | fm (t as Const("op <", Type ("fun", [T,_])) $ x $ y) = rel (T, t)
     | fm (t as Const("op <=", Type ("fun", [T,_])) $ x $ y) = rel (T, t)
     | fm t = replace t
   (*entry point, and abstraction of a meta-formula*)
   fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p)
     | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q)
     | mt t = fm t  (*it might be a formula*)
  in (list_all (params, mt body), !pairs) end;

 fun oracle (sign, OracleExn svc_form) = 
     if valid (expr_of false svc_form) then svc_form
     else raise OracleExn svc_form;

end;