(* Title: Pure/Isar/generic_target.ML
Author: Makarius
Author: Florian Haftmann, TU Muenchen
Common target infrastructure.
*)
signature GENERIC_TARGET =
sig
val define: (((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory) ->
bool -> (binding * mixfix) * (Attrib.binding * term) -> local_theory ->
(term * (string * thm)) * local_theory
val notes:
(string -> (Attrib.binding * (thm list * Args.src list) list) list ->
(Attrib.binding * (thm list * Args.src list) list) list -> local_theory -> local_theory) ->
string -> (Attrib.binding * (thm list * Args.src list) list) list -> local_theory ->
(string * thm list) list * local_theory
val locale_notes: string -> string ->
(Attrib.binding * (thm list * Args.src list) list) list ->
(Attrib.binding * (thm list * Args.src list) list) list ->
local_theory -> local_theory
val abbrev: (string * bool -> binding * mixfix -> term * term ->
term list -> local_theory -> local_theory) ->
string * bool -> (binding * mixfix) * term -> local_theory -> (term * term) * local_theory
val background_declaration: declaration -> local_theory -> local_theory
val locale_declaration: string -> bool -> declaration -> local_theory -> local_theory
val standard_declaration: (int -> bool) -> declaration -> local_theory -> local_theory
val generic_const: bool -> Syntax.mode -> (binding * mixfix) * term ->
Context.generic -> Context.generic
val const_declaration: (int -> bool) -> Syntax.mode -> (binding * mixfix) * term ->
local_theory -> local_theory
val background_foundation: ((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory
val theory_foundation: ((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory
val theory_notes: string ->
(Attrib.binding * (thm list * Args.src list) list) list ->
(Attrib.binding * (thm list * Args.src list) list) list ->
local_theory -> local_theory
val theory_abbrev: Syntax.mode -> (binding * mixfix) -> term * term -> term list ->
local_theory -> local_theory
val theory_declaration: declaration -> local_theory -> local_theory
val theory_registration: string * morphism -> (morphism * bool) option -> morphism ->
local_theory -> local_theory
val locale_dependency: string -> string * morphism -> (morphism * bool) option -> morphism ->
local_theory -> local_theory
end
structure Generic_Target: GENERIC_TARGET =
struct
(** lifting primitive to target operations **)
(* mixfix syntax *)
fun check_mixfix ctxt (b, extra_tfrees) mx =
if null extra_tfrees then mx
else
(Context_Position.if_visible ctxt warning
("Additional type variable(s) in specification of " ^ Binding.print b ^ ": " ^
commas (map (Syntax.string_of_typ ctxt o TFree) (sort_wrt #1 extra_tfrees)) ^
(if mx = NoSyn then ""
else "\nDropping mixfix syntax " ^ Pretty.string_of (Mixfix.pretty_mixfix mx)));
NoSyn);
fun check_mixfix_global (b, no_params) mx =
if no_params orelse mx = NoSyn then mx
else (warning ("Dropping global mixfix syntax: " ^ Binding.print b ^ " " ^
Pretty.string_of (Mixfix.pretty_mixfix mx)); NoSyn);
(* define *)
fun define foundation internal ((b, mx), ((b_def, atts), rhs)) lthy =
let
val thy = Proof_Context.theory_of lthy;
val thy_ctxt = Proof_Context.init_global thy;
(*term and type parameters*)
val ((defs, _), rhs') = Thm.cterm_of thy rhs
|> Local_Defs.export_cterm lthy thy_ctxt ||> Thm.term_of;
val xs = Variable.add_fixed lthy rhs' [];
val T = Term.fastype_of rhs;
val tfreesT = Term.add_tfreesT T (fold (Term.add_tfreesT o #2) xs []);
val extra_tfrees = rev (subtract (op =) tfreesT (Term.add_tfrees rhs []));
val mx' = check_mixfix lthy (b, extra_tfrees) mx;
val type_params = map (Logic.mk_type o TFree) extra_tfrees;
val term_params = map Free (sort (Variable.fixed_ord lthy o pairself #1) xs);
val params = type_params @ term_params;
val U = map Term.fastype_of params ---> T;
(*foundation*)
val ((lhs', global_def), lthy2) = lthy
|> foundation (((b, U), mx'), (b_def, rhs')) (type_params, term_params);
(*local definition*)
val ((lhs, local_def), lthy3) = lthy2
|> Local_Defs.add_def ((b, NoSyn), lhs');
(*result*)
val def =
Thm.transitive local_def global_def
|> Local_Defs.contract lthy3 defs
(Thm.cterm_of (Proof_Context.theory_of lthy3) (Logic.mk_equals (lhs, rhs)));
val ([(res_name, [res])], lthy4) = lthy3
|> Local_Theory.notes [((if internal then Binding.empty else b_def, atts), [([def], [])])];
in ((lhs, (res_name, res)), lthy4) end;
(* notes *)
local
fun import_export_proof ctxt (name, raw_th) =
let
val thy = Proof_Context.theory_of ctxt;
val thy_ctxt = Proof_Context.init_global thy;
val certT = Thm.ctyp_of thy;
val cert = Thm.cterm_of thy;
(*export assumes/defines*)
val th = Goal.norm_result ctxt raw_th;
val ((defs, asms), th') = Local_Defs.export ctxt thy_ctxt th;
val asms' = map (rewrite_rule ctxt (Drule.norm_hhf_eqs @ defs)) asms;
(*export fixes*)
val tfrees = map TFree (Thm.fold_terms Term.add_tfrees th' []);
val frees = map Free (Thm.fold_terms Term.add_frees th' []);
val (th'' :: vs) =
(th' :: map (Drule.mk_term o cert) (map Logic.mk_type tfrees @ frees))
|> Variable.export ctxt thy_ctxt
|> Drule.zero_var_indexes_list;
(*thm definition*)
val result = Global_Theory.name_thm true true name th'';
(*import fixes*)
val (tvars, vars) =
chop (length tfrees) (map (Thm.term_of o Drule.dest_term) vs)
|>> map Logic.dest_type;
val instT = map_filter (fn (TVar v, T) => SOME (v, T) | _ => NONE) (tvars ~~ tfrees);
val inst = filter (is_Var o fst) (vars ~~ frees);
val cinstT = map (pairself certT o apfst TVar) instT;
val cinst = map (pairself (cert o Term.map_types (Term_Subst.instantiateT instT))) inst;
val result' = Thm.instantiate (cinstT, cinst) result;
(*import assumes/defines*)
val result'' =
(fold (curry op COMP) asms' result'
handle THM _ => raise THM ("Failed to re-import result", 0, result' :: asms'))
|> Local_Defs.contract ctxt defs (Thm.cprop_of th)
|> Goal.norm_result ctxt
|> Global_Theory.name_thm false false name;
in (result'', result) end;
fun standard_facts lthy ctxt =
Element.transform_facts (Local_Theory.standard_morphism lthy ctxt);
in
fun notes target_notes kind facts lthy =
let
val facts' = facts
|> map (fn (a, bs) => (a, Global_Theory.burrow_fact (Global_Theory.name_multi
(Local_Theory.full_name lthy (fst a))) bs))
|> Global_Theory.map_facts (import_export_proof lthy);
val local_facts = Global_Theory.map_facts #1 facts';
val global_facts = Global_Theory.map_facts #2 facts';
in
lthy
|> target_notes kind global_facts (Attrib.partial_evaluation lthy local_facts)
|> Attrib.local_notes kind local_facts
end;
fun locale_notes locale kind global_facts local_facts =
Local_Theory.background_theory
(Attrib.global_notes kind (Attrib.map_facts (K []) global_facts) #> snd) #>
(fn lthy => lthy |>
Local_Theory.target (fn ctxt => ctxt |>
Locale.add_thmss locale kind (standard_facts lthy ctxt local_facts))) #>
(fn lthy => lthy |>
Local_Theory.map_contexts (fn level => fn ctxt =>
if level = 0 orelse level = Local_Theory.level lthy then ctxt
else ctxt |> Attrib.local_notes kind (standard_facts lthy ctxt local_facts) |> snd));
end;
(* abbrev *)
fun abbrev target_abbrev prmode ((b, mx), t) lthy =
let
val thy_ctxt = Proof_Context.init_global (Proof_Context.theory_of lthy);
val t' = Assumption.export_term lthy (Local_Theory.target_of lthy) t;
val xs = map Free (sort (Variable.fixed_ord lthy o pairself #1) (Variable.add_fixed lthy t' []));
val u = fold_rev lambda xs t';
val global_rhs = singleton (Variable.polymorphic thy_ctxt) u;
val extra_tfrees =
subtract (op =) (Term.add_tfreesT (Term.fastype_of u) []) (Term.add_tfrees u []);
val mx' = check_mixfix lthy (b, extra_tfrees) mx;
in
lthy
|> target_abbrev prmode (b, mx') (global_rhs, t') xs
|> Proof_Context.add_abbrev Print_Mode.internal (b, t) |> snd
|> Local_Defs.fixed_abbrev ((b, NoSyn), t)
end;
(* declaration *)
fun background_declaration decl lthy =
let
val theory_decl =
Local_Theory.standard_form lthy
(Proof_Context.init_global (Proof_Context.theory_of lthy)) decl;
in Local_Theory.background_theory (Context.theory_map theory_decl) lthy end;
fun locale_declaration locale syntax decl lthy = lthy
|> Local_Theory.target (fn ctxt => ctxt |>
Locale.add_declaration locale syntax
(Morphism.transform (Local_Theory.standard_morphism lthy ctxt) decl));
fun standard_declaration pred decl lthy =
Local_Theory.map_contexts (fn level => fn ctxt =>
if pred level then Context.proof_map (Local_Theory.standard_form lthy ctxt decl) ctxt
else ctxt) lthy;
(* const declaration *)
fun generic_const same_shape prmode ((b, mx), t) context =
let
val const_alias =
if same_shape then
(case t of
Const (c, T) =>
let
val thy = Context.theory_of context;
val ctxt = Context.proof_of context;
in
(case Type_Infer_Context.const_type ctxt c of
SOME T' => if Sign.typ_equiv thy (T, T') then SOME c else NONE
| NONE => NONE)
end
| _ => NONE)
else NONE;
in
(case const_alias of
SOME c =>
context
|> Context.mapping (Sign.const_alias b c) (Proof_Context.const_alias b c)
|> Morphism.form (Proof_Context.generic_notation true prmode [(t, mx)])
| NONE =>
context
|> Proof_Context.generic_add_abbrev Print_Mode.internal (b, Term.close_schematic_term t)
|-> (fn (const as Const (c, _), _) => same_shape ?
(Proof_Context.generic_revert_abbrev (#1 prmode) c #>
Morphism.form (Proof_Context.generic_notation true prmode [(const, mx)]))))
end;
fun const_declaration pred prmode ((b, mx), rhs) =
standard_declaration pred (fn phi =>
let
val b' = Morphism.binding phi b;
val rhs' = Morphism.term phi rhs;
val same_shape = Term.aconv_untyped (rhs, rhs');
in generic_const same_shape prmode ((b', mx), rhs') end);
(* registrations and dependencies *)
val theory_registration =
Local_Theory.raw_theory o Context.theory_map ooo Locale.add_registration;
fun locale_dependency locale dep_morph mixin export =
(Local_Theory.raw_theory ooo Locale.add_dependency locale) dep_morph mixin export
#> Local_Theory.activate_nonbrittle dep_morph mixin export;
(** primitive theory operations **)
fun background_foundation (((b, U), mx), (b_def, rhs)) (type_params, term_params) lthy =
let
val params = type_params @ term_params;
val mx' = check_mixfix_global (b, null params) mx;
val (const, lthy2) = lthy
|> Local_Theory.background_theory_result (Sign.declare_const lthy ((b, U), mx'));
val lhs = Term.list_comb (const, params);
val ((_, def), lthy3) = lthy2
|> Local_Theory.background_theory_result
(Thm.add_def lthy2 false false
(Thm.def_binding_optional b b_def, Logic.mk_equals (lhs, rhs)));
in ((lhs, def), lthy3) end;
fun theory_foundation (((b, U), mx), (b_def, rhs)) (type_params, term_params) =
background_foundation (((b, U), mx), (b_def, rhs)) (type_params, term_params)
#-> (fn (lhs, def) => fn lthy' => lthy' |>
const_declaration (fn level => level <> Local_Theory.level lthy')
Syntax.mode_default ((b, mx), lhs)
|> pair (lhs, def));
fun theory_notes kind global_facts local_facts =
Local_Theory.background_theory (Attrib.global_notes kind global_facts #> snd) #>
(fn lthy => lthy |> Local_Theory.map_contexts (fn level => fn ctxt =>
if level = Local_Theory.level lthy then ctxt
else
ctxt |> Attrib.local_notes kind
(Element.transform_facts (Local_Theory.standard_morphism lthy ctxt) local_facts) |> snd));
fun theory_abbrev prmode (b, mx) (t, _) xs =
Local_Theory.background_theory_result
(Sign.add_abbrev (#1 prmode) (b, t) #->
(fn (lhs, _) => (* FIXME type_params!? *)
Sign.notation true prmode [(lhs, check_mixfix_global (b, null xs) mx)] #> pair lhs))
#-> (fn lhs => fn lthy' => lthy' |>
const_declaration (fn level => level <> Local_Theory.level lthy') prmode
((b, if null xs then NoSyn else mx), Term.list_comb (Logic.unvarify_global lhs, xs)));
fun theory_declaration decl =
background_declaration decl #> standard_declaration (K true) decl;
end;