(* Title: HOL/Orderings.thy
ID: $Id$
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson
*)
header {* Syntactic and abstract orders *}
theory Orderings
imports Set Fun
uses
(*"~~/src/Provers/quasi.ML"*)
"~~/src/Provers/order.ML"
begin
subsection {* Partial orders *}
class order = ord +
assumes less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y"
and order_refl [iff]: "x \<sqsubseteq> x"
and order_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"
begin
text {* Reflexivity. *}
lemma eq_refl: "x = y \<Longrightarrow> x \<^loc>\<le> y"
-- {* This form is useful with the classical reasoner. *}
by (erule ssubst) (rule order_refl)
lemma less_irrefl [iff]: "\<not> x \<^loc>< x"
by (simp add: less_le)
lemma le_less: "x \<^loc>\<le> y \<longleftrightarrow> x \<^loc>< y \<or> x = y"
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
by (simp add: less_le) blast
lemma le_imp_less_or_eq: "x \<^loc>\<le> y \<Longrightarrow> x \<^loc>< y \<or> x = y"
unfolding less_le by blast
lemma less_imp_le: "x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y"
unfolding less_le by blast
lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y"
by (erule contrapos_pn, erule subst, rule less_irrefl)
text {* Useful for simplification, but too risky to include by default. *}
lemma less_imp_not_eq: "x \<^loc>< y \<Longrightarrow> (x = y) \<longleftrightarrow> False"
by auto
lemma less_imp_not_eq2: "x \<^loc>< y \<Longrightarrow> (y = x) \<longleftrightarrow> False"
by auto
text {* Transitivity rules for calculational reasoning *}
lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<^loc>\<le> b \<Longrightarrow> a \<^loc>< b"
by (simp add: less_le)
lemma le_neq_trans: "a \<^loc>\<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a \<^loc>< b"
by (simp add: less_le)
text {* Asymmetry. *}
lemma less_not_sym: "x \<^loc>< y \<Longrightarrow> \<not> (y \<^loc>< x)"
by (simp add: less_le antisym)
lemma less_asym: "x \<^loc>< y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<^loc>< x) \<Longrightarrow> P"
by (drule less_not_sym, erule contrapos_np) simp
lemma eq_iff: "x = y \<longleftrightarrow> x \<^loc>\<le> y \<and> y \<^loc>\<le> x"
by (blast intro: antisym)
lemma antisym_conv: "y \<^loc>\<le> x \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y"
by (blast intro: antisym)
lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y"
by (erule contrapos_pn, erule subst, rule less_irrefl)
text {* Transitivity. *}
lemma less_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z"
by (simp add: less_le) (blast intro: order_trans antisym)
lemma le_less_trans: "x \<^loc>\<le> y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z"
by (simp add: less_le) (blast intro: order_trans antisym)
lemma less_le_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<^loc>< z"
by (simp add: less_le) (blast intro: order_trans antisym)
text {* Useful for simplification, but too risky to include by default. *}
lemma less_imp_not_less: "x \<^loc>< y \<Longrightarrow> (\<not> y \<^loc>< x) \<longleftrightarrow> True"
by (blast elim: less_asym)
lemma less_imp_triv: "x \<^loc>< y \<Longrightarrow> (y \<^loc>< x \<longrightarrow> P) \<longleftrightarrow> True"
by (blast elim: less_asym)
text {* Transitivity rules for calculational reasoning *}
lemma less_asym': "a \<^loc>< b \<Longrightarrow> b \<^loc>< a \<Longrightarrow> P"
by (rule less_asym)
text {* Reverse order *}
lemma order_reverse:
"order (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)"
by unfold_locales
(simp add: less_le, auto intro: antisym order_trans)
end
subsection {* Linear (total) orders *}
class linorder = order +
assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
begin
lemma less_linear: "x \<^loc>< y \<or> x = y \<or> y \<^loc>< x"
unfolding less_le using less_le linear by blast
lemma le_less_linear: "x \<^loc>\<le> y \<or> y \<^loc>< x"
by (simp add: le_less less_linear)
lemma le_cases [case_names le ge]:
"(x \<^loc>\<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>\<le> x \<Longrightarrow> P) \<Longrightarrow> P"
using linear by blast
lemma linorder_cases [case_names less equal greater]:
"(x \<^loc>< y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> P) \<Longrightarrow> P"
using less_linear by blast
lemma not_less: "\<not> x \<^loc>< y \<longleftrightarrow> y \<^loc>\<le> x"
apply (simp add: less_le)
using linear apply (blast intro: antisym)
done
lemma not_less_iff_gr_or_eq:
"\<not>(x \<^loc>< y) \<longleftrightarrow> (x \<^loc>> y | x = y)"
apply(simp add:not_less le_less)
apply blast
done
lemma not_le: "\<not> x \<^loc>\<le> y \<longleftrightarrow> y \<^loc>< x"
apply (simp add: less_le)
using linear apply (blast intro: antisym)
done
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<^loc>< y \<or> y \<^loc>< x"
by (cut_tac x = x and y = y in less_linear, auto)
lemma neqE: "x \<noteq> y \<Longrightarrow> (x \<^loc>< y \<Longrightarrow> R) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> R) \<Longrightarrow> R"
by (simp add: neq_iff) blast
lemma antisym_conv1: "\<not> x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y"
by (blast intro: antisym dest: not_less [THEN iffD1])
lemma antisym_conv2: "x \<^loc>\<le> y \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y"
by (blast intro: antisym dest: not_less [THEN iffD1])
lemma antisym_conv3: "\<not> y \<^loc>< x \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y"
by (blast intro: antisym dest: not_less [THEN iffD1])
text{*Replacing the old Nat.leI*}
lemma leI: "\<not> x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x"
unfolding not_less .
lemma leD: "y \<^loc>\<le> x \<Longrightarrow> \<not> x \<^loc>< y"
unfolding not_less .
(*FIXME inappropriate name (or delete altogether)*)
lemma not_leE: "\<not> y \<^loc>\<le> x \<Longrightarrow> x \<^loc>< y"
unfolding not_le .
text {* Reverse order *}
lemma linorder_reverse:
"linorder (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)"
by unfold_locales
(simp add: less_le, auto intro: antisym order_trans simp add: linear)
text {* min/max *}
text {* for historic reasons, definitions are done in context ord *}
definition (in ord)
min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
[code unfold, code inline del]: "min a b = (if a \<^loc>\<le> b then a else b)"
definition (in ord)
max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
[code unfold, code inline del]: "max a b = (if a \<^loc>\<le> b then b else a)"
lemma min_le_iff_disj:
"min x y \<^loc>\<le> z \<longleftrightarrow> x \<^loc>\<le> z \<or> y \<^loc>\<le> z"
unfolding min_def using linear by (auto intro: order_trans)
lemma le_max_iff_disj:
"z \<^loc>\<le> max x y \<longleftrightarrow> z \<^loc>\<le> x \<or> z \<^loc>\<le> y"
unfolding max_def using linear by (auto intro: order_trans)
lemma min_less_iff_disj:
"min x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<or> y \<^loc>< z"
unfolding min_def le_less using less_linear by (auto intro: less_trans)
lemma less_max_iff_disj:
"z \<^loc>< max x y \<longleftrightarrow> z \<^loc>< x \<or> z \<^loc>< y"
unfolding max_def le_less using less_linear by (auto intro: less_trans)
lemma min_less_iff_conj [simp]:
"z \<^loc>< min x y \<longleftrightarrow> z \<^loc>< x \<and> z \<^loc>< y"
unfolding min_def le_less using less_linear by (auto intro: less_trans)
lemma max_less_iff_conj [simp]:
"max x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<and> y \<^loc>< z"
unfolding max_def le_less using less_linear by (auto intro: less_trans)
lemma split_min [noatp]:
"P (min i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P i) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P j)"
by (simp add: min_def)
lemma split_max [noatp]:
"P (max i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P j) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P i)"
by (simp add: max_def)
end
subsection {* Reasoning tools setup *}
ML {*
local
fun decomp_gen sort thy (Trueprop $ t) =
let
fun of_sort t =
let
val T = type_of t
in
(* exclude numeric types: linear arithmetic subsumes transitivity *)
T <> HOLogic.natT andalso T <> HOLogic.intT
andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort)
end;
fun dec (Const (@{const_name Not}, _) $ t) = (case dec t
of NONE => NONE
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
| dec (Const (@{const_name "op ="}, _) $ t1 $ t2) =
if of_sort t1
then SOME (t1, "=", t2)
else NONE
| dec (Const (@{const_name HOL.less_eq}, _) $ t1 $ t2) =
if of_sort t1
then SOME (t1, "<=", t2)
else NONE
| dec (Const (@{const_name HOL.less}, _) $ t1 $ t2) =
if of_sort t1
then SOME (t1, "<", t2)
else NONE
| dec _ = NONE;
in dec t end;
in
(* sorry - there is no preorder class
structure Quasi_Tac = Quasi_Tac_Fun (
struct
val le_trans = thm "order_trans";
val le_refl = thm "order_refl";
val eqD1 = thm "order_eq_refl";
val eqD2 = thm "sym" RS thm "order_eq_refl";
val less_reflE = thm "order_less_irrefl" RS thm "notE";
val less_imp_le = thm "order_less_imp_le";
val le_neq_trans = thm "order_le_neq_trans";
val neq_le_trans = thm "order_neq_le_trans";
val less_imp_neq = thm "less_imp_neq";
val decomp_trans = decomp_gen ["Orderings.preorder"];
val decomp_quasi = decomp_gen ["Orderings.preorder"];
end);*)
structure Order_Tac = Order_Tac_Fun (
struct
val less_reflE = @{thm less_irrefl} RS @{thm notE};
val le_refl = @{thm order_refl};
val less_imp_le = @{thm less_imp_le};
val not_lessI = @{thm not_less} RS @{thm iffD2};
val not_leI = @{thm not_le} RS @{thm iffD2};
val not_lessD = @{thm not_less} RS @{thm iffD1};
val not_leD = @{thm not_le} RS @{thm iffD1};
val eqI = @{thm antisym};
val eqD1 = @{thm eq_refl};
val eqD2 = @{thm sym} RS @{thm eq_refl};
val less_trans = @{thm less_trans};
val less_le_trans = @{thm less_le_trans};
val le_less_trans = @{thm le_less_trans};
val le_trans = @{thm order_trans};
val le_neq_trans = @{thm le_neq_trans};
val neq_le_trans = @{thm neq_le_trans};
val less_imp_neq = @{thm less_imp_neq};
val eq_neq_eq_imp_neq = @{thm eq_neq_eq_imp_neq};
val not_sym = @{thm not_sym};
val decomp_part = decomp_gen ["Orderings.order"];
val decomp_lin = decomp_gen ["Orderings.linorder"];
end);
end;
*}
setup {*
let
fun prp t thm = (#prop (rep_thm thm) = t);
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =
let val prems = prems_of_ss ss;
val less = Const (@{const_name less}, T);
val t = HOLogic.mk_Trueprop(le $ s $ r);
in case find_first (prp t) prems of
NONE =>
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))
in case find_first (prp t) prems of
NONE => NONE
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
end
| SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
end
handle THM _ => NONE;
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =
let val prems = prems_of_ss ss;
val le = Const (@{const_name less_eq}, T);
val t = HOLogic.mk_Trueprop(le $ r $ s);
in case find_first (prp t) prems of
NONE =>
let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))
in case find_first (prp t) prems of
NONE => NONE
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
end
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
end
handle THM _ => NONE;
fun add_simprocs procs thy =
(Simplifier.change_simpset_of thy (fn ss => ss
addsimprocs (map (fn (name, raw_ts, proc) =>
Simplifier.simproc thy name raw_ts proc)) procs); thy);
fun add_solver name tac thy =
(Simplifier.change_simpset_of thy (fn ss => ss addSolver
(mk_solver name (K tac))); thy);
in
add_simprocs [
("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
]
#> add_solver "Trans_linear" Order_Tac.linear_tac
#> add_solver "Trans_partial" Order_Tac.partial_tac
(* Adding the transitivity reasoners also as safe solvers showed a slight
speed up, but the reasoning strength appears to be not higher (at least
no breaking of additional proofs in the entire HOL distribution, as
of 5 March 2004, was observed). *)
end
*}
subsection {* Dense orders *}
class dense_linear_order = linorder +
assumes gt_ex: "\<exists>y. x \<sqsubset> y"
and lt_ex: "\<exists>y. y \<sqsubset> x"
and dense: "x \<sqsubset> y \<Longrightarrow> (\<exists>z. x \<sqsubset> z \<and> z \<sqsubset> y)"
(*see further theory Dense_Linear_Order*)
lemma interval_empty_iff:
fixes x y z :: "'a\<Colon>dense_linear_order"
shows "{y. x < y \<and> y < z} = {} \<longleftrightarrow> \<not> x < z"
by (auto dest: dense)
subsection {* Name duplicates *}
lemmas order_less_le = less_le
lemmas order_eq_refl = order_class.eq_refl
lemmas order_less_irrefl = order_class.less_irrefl
lemmas order_le_less = order_class.le_less
lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq
lemmas order_less_imp_le = order_class.less_imp_le
lemmas order_less_imp_not_eq = order_class.less_imp_not_eq
lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2
lemmas order_neq_le_trans = order_class.neq_le_trans
lemmas order_le_neq_trans = order_class.le_neq_trans
lemmas order_antisym = antisym
lemmas order_less_not_sym = order_class.less_not_sym
lemmas order_less_asym = order_class.less_asym
lemmas order_eq_iff = order_class.eq_iff
lemmas order_antisym_conv = order_class.antisym_conv
lemmas order_less_trans = order_class.less_trans
lemmas order_le_less_trans = order_class.le_less_trans
lemmas order_less_le_trans = order_class.less_le_trans
lemmas order_less_imp_not_less = order_class.less_imp_not_less
lemmas order_less_imp_triv = order_class.less_imp_triv
lemmas order_less_asym' = order_class.less_asym'
lemmas linorder_linear = linear
lemmas linorder_less_linear = linorder_class.less_linear
lemmas linorder_le_less_linear = linorder_class.le_less_linear
lemmas linorder_le_cases = linorder_class.le_cases
lemmas linorder_not_less = linorder_class.not_less
lemmas linorder_not_le = linorder_class.not_le
lemmas linorder_neq_iff = linorder_class.neq_iff
lemmas linorder_neqE = linorder_class.neqE
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3
lemmas min_le_iff_disj = linorder_class.min_le_iff_disj
lemmas le_max_iff_disj = linorder_class.le_max_iff_disj
lemmas min_less_iff_disj = linorder_class.min_less_iff_disj
lemmas less_max_iff_disj = linorder_class.less_max_iff_disj
lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj
lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj
lemmas split_min = linorder_class.split_min
lemmas split_max = linorder_class.split_max
subsection {* Bounded quantifiers *}
syntax
"_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10)
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10)
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10)
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10)
syntax (xsymbols)
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
syntax (HOL)
"_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10)
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10)
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10)
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10)
syntax (HTML output)
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
translations
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P"
"EX x<y. P" => "EX x. x < y \<and> P"
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P"
"EX x<=y. P" => "EX x. x <= y \<and> P"
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P"
"EX x>y. P" => "EX x. x > y \<and> P"
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P"
"EX x>=y. P" => "EX x. x >= y \<and> P"
print_translation {*
let
val All_binder = Syntax.binder_name @{const_syntax All};
val Ex_binder = Syntax.binder_name @{const_syntax Ex};
val impl = @{const_syntax "op -->"};
val conj = @{const_syntax "op &"};
val less = @{const_syntax less};
val less_eq = @{const_syntax less_eq};
val trans =
[((All_binder, impl, less), ("_All_less", "_All_greater")),
((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
fun matches_bound v t =
case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
| _ => false
fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false)
fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P
fun tr' q = (q,
fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
(case AList.lookup (op =) trans (q, c, d) of
NONE => raise Match
| SOME (l, g) =>
if matches_bound v t andalso not (contains_var v u) then mk v l u P
else if matches_bound v u andalso not (contains_var v t) then mk v g t P
else raise Match)
| _ => raise Match);
in [tr' All_binder, tr' Ex_binder] end
*}
subsection {* Transitivity reasoning *}
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
by (rule subst)
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
by (rule ssubst)
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
by (rule subst)
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
by (rule ssubst)
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
(!!x y. x < y ==> f x < f y) ==> f a < c"
proof -
assume r: "!!x y. x < y ==> f x < f y"
assume "a < b" hence "f a < f b" by (rule r)
also assume "f b < c"
finally (order_less_trans) show ?thesis .
qed
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
(!!x y. x < y ==> f x < f y) ==> a < f c"
proof -
assume r: "!!x y. x < y ==> f x < f y"
assume "a < f b"
also assume "b < c" hence "f b < f c" by (rule r)
finally (order_less_trans) show ?thesis .
qed
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
(!!x y. x <= y ==> f x <= f y) ==> f a < c"
proof -
assume r: "!!x y. x <= y ==> f x <= f y"
assume "a <= b" hence "f a <= f b" by (rule r)
also assume "f b < c"
finally (order_le_less_trans) show ?thesis .
qed
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
(!!x y. x < y ==> f x < f y) ==> a < f c"
proof -
assume r: "!!x y. x < y ==> f x < f y"
assume "a <= f b"
also assume "b < c" hence "f b < f c" by (rule r)
finally (order_le_less_trans) show ?thesis .
qed
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
(!!x y. x < y ==> f x < f y) ==> f a < c"
proof -
assume r: "!!x y. x < y ==> f x < f y"
assume "a < b" hence "f a < f b" by (rule r)
also assume "f b <= c"
finally (order_less_le_trans) show ?thesis .
qed
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
(!!x y. x <= y ==> f x <= f y) ==> a < f c"
proof -
assume r: "!!x y. x <= y ==> f x <= f y"
assume "a < f b"
also assume "b <= c" hence "f b <= f c" by (rule r)
finally (order_less_le_trans) show ?thesis .
qed
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"
proof -
assume r: "!!x y. x <= y ==> f x <= f y"
assume "a <= f b"
also assume "b <= c" hence "f b <= f c" by (rule r)
finally (order_trans) show ?thesis .
qed
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"
proof -
assume r: "!!x y. x <= y ==> f x <= f y"
assume "a <= b" hence "f a <= f b" by (rule r)
also assume "f b <= c"
finally (order_trans) show ?thesis .
qed
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"
proof -
assume r: "!!x y. x <= y ==> f x <= f y"
assume "a <= b" hence "f a <= f b" by (rule r)
also assume "f b = c"
finally (ord_le_eq_trans) show ?thesis .
qed
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"
proof -
assume r: "!!x y. x <= y ==> f x <= f y"
assume "a = f b"
also assume "b <= c" hence "f b <= f c" by (rule r)
finally (ord_eq_le_trans) show ?thesis .
qed
lemma ord_less_eq_subst: "a < b ==> f b = c ==>
(!!x y. x < y ==> f x < f y) ==> f a < c"
proof -
assume r: "!!x y. x < y ==> f x < f y"
assume "a < b" hence "f a < f b" by (rule r)
also assume "f b = c"
finally (ord_less_eq_trans) show ?thesis .
qed
lemma ord_eq_less_subst: "a = f b ==> b < c ==>
(!!x y. x < y ==> f x < f y) ==> a < f c"
proof -
assume r: "!!x y. x < y ==> f x < f y"
assume "a = f b"
also assume "b < c" hence "f b < f c" by (rule r)
finally (ord_eq_less_trans) show ?thesis .
qed
text {*
Note that this list of rules is in reverse order of priorities.
*}
lemmas order_trans_rules [trans] =
order_less_subst2
order_less_subst1
order_le_less_subst2
order_le_less_subst1
order_less_le_subst2
order_less_le_subst1
order_subst2
order_subst1
ord_le_eq_subst
ord_eq_le_subst
ord_less_eq_subst
ord_eq_less_subst
forw_subst
back_subst
rev_mp
mp
order_neq_le_trans
order_le_neq_trans
order_less_trans
order_less_asym'
order_le_less_trans
order_less_le_trans
order_trans
order_antisym
ord_le_eq_trans
ord_eq_le_trans
ord_less_eq_trans
ord_eq_less_trans
trans
(* FIXME cleanup *)
text {* These support proving chains of decreasing inequalities
a >= b >= c ... in Isar proofs. *}
lemma xt1:
"a = b ==> b > c ==> a > c"
"a > b ==> b = c ==> a > c"
"a = b ==> b >= c ==> a >= c"
"a >= b ==> b = c ==> a >= c"
"(x::'a::order) >= y ==> y >= x ==> x = y"
"(x::'a::order) >= y ==> y >= z ==> x >= z"
"(x::'a::order) > y ==> y >= z ==> x > z"
"(x::'a::order) >= y ==> y > z ==> x > z"
"(a::'a::order) > b ==> b > a ==> P"
"(x::'a::order) > y ==> y > z ==> x > z"
"(a::'a::order) >= b ==> a ~= b ==> a > b"
"(a::'a::order) ~= b ==> a >= b ==> a > b"
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"
by auto
lemma xt2:
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
by (subgoal_tac "f b >= f c", force, force)
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==>
(!!x y. x >= y ==> f x >= f y) ==> f a >= c"
by (subgoal_tac "f a >= f b", force, force)
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
(!!x y. x >= y ==> f x >= f y) ==> a > f c"
by (subgoal_tac "f b >= f c", force, force)
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
(!!x y. x > y ==> f x > f y) ==> f a > c"
by (subgoal_tac "f a > f b", force, force)
lemma xt6: "(a::'a::order) >= f b ==> b > c ==>
(!!x y. x > y ==> f x > f y) ==> a > f c"
by (subgoal_tac "f b > f c", force, force)
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
(!!x y. x >= y ==> f x >= f y) ==> f a > c"
by (subgoal_tac "f a >= f b", force, force)
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
(!!x y. x > y ==> f x > f y) ==> a > f c"
by (subgoal_tac "f b > f c", force, force)
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
(!!x y. x > y ==> f x > f y) ==> f a > c"
by (subgoal_tac "f a > f b", force, force)
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9
(*
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
for the wrong thing in an Isar proof.
The extra transitivity rules can be used as follows:
lemma "(a::'a::order) > z"
proof -
have "a >= b" (is "_ >= ?rhs")
sorry
also have "?rhs >= c" (is "_ >= ?rhs")
sorry
also (xtrans) have "?rhs = d" (is "_ = ?rhs")
sorry
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
sorry
also (xtrans) have "?rhs > f" (is "_ > ?rhs")
sorry
also (xtrans) have "?rhs > z"
sorry
finally (xtrans) show ?thesis .
qed
Alternatively, one can use "declare xtrans [trans]" and then
leave out the "(xtrans)" above.
*)
subsection {* Order on bool *}
instance bool :: order
le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q"
less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q"
by intro_classes (auto simp add: le_bool_def less_bool_def)
lemmas [code func del] = le_bool_def less_bool_def
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"
by (simp add: le_bool_def)
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"
by (simp add: le_bool_def)
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"
by (simp add: le_bool_def)
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"
by (simp add: le_bool_def)
lemma [code func]:
"False \<le> b \<longleftrightarrow> True"
"True \<le> b \<longleftrightarrow> b"
"False < b \<longleftrightarrow> b"
"True < b \<longleftrightarrow> False"
unfolding le_bool_def less_bool_def by simp_all
subsection {* Order on sets *}
instance set :: (type) order
by (intro_classes,
(assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+)
lemmas basic_trans_rules [trans] =
order_trans_rules set_rev_mp set_mp
subsection {* Order on functions *}
instance "fun" :: (type, ord) ord
le_fun_def: "f \<le> g \<equiv> \<forall>x. f x \<le> g x"
less_fun_def: "f < g \<equiv> f \<le> g \<and> f \<noteq> g" ..
lemmas [code func del] = le_fun_def less_fun_def
instance "fun" :: (type, order) order
by default
(auto simp add: le_fun_def less_fun_def expand_fun_eq
intro: order_trans order_antisym)
lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g"
unfolding le_fun_def by simp
lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P"
unfolding le_fun_def by simp
lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x"
unfolding le_fun_def by simp
text {*
Handy introduction and elimination rules for @{text "\<le>"}
on unary and binary predicates
*}
lemma predicate1I [Pure.intro!, intro!]:
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"
shows "P \<le> Q"
apply (rule le_funI)
apply (rule le_boolI)
apply (rule PQ)
apply assumption
done
lemma predicate1D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x"
apply (erule le_funE)
apply (erule le_boolE)
apply assumption+
done
lemma predicate2I [Pure.intro!, intro!]:
assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y"
shows "P \<le> Q"
apply (rule le_funI)+
apply (rule le_boolI)
apply (rule PQ)
apply assumption
done
lemma predicate2D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y"
apply (erule le_funE)+
apply (erule le_boolE)
apply assumption+
done
lemma rev_predicate1D: "P x ==> P <= Q ==> Q x"
by (rule predicate1D)
lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y"
by (rule predicate2D)
subsection {* Monotonicity, least value operator and min/max *}
locale mono =
fixes f
assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B"
lemmas monoI [intro?] = mono.intro
and monoD [dest?] = mono.mono
lemma LeastI2_order:
"[| P (x::'a::order);
!!y. P y ==> x <= y;
!!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
==> Q (Least P)"
apply (unfold Least_def)
apply (rule theI2)
apply (blast intro: order_antisym)+
done
lemma Least_mono:
"mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
-- {* Courtesy of Stephan Merz *}
apply clarify
apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)
apply (rule LeastI2_order)
apply (auto elim: monoD intro!: order_antisym)
done
lemma Least_equality:
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
apply (simp add: Least_def)
apply (rule the_equality)
apply (auto intro!: order_antisym)
done
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
by (simp add: min_def)
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
by (simp add: max_def)
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least"
apply (simp add: min_def)
apply (blast intro: order_antisym)
done
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x"
apply (simp add: max_def)
apply (blast intro: order_antisym)
done
lemma min_of_mono:
"(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)"
by (simp add: min_def)
lemma max_of_mono:
"(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)"
by (simp add: max_def)
subsection {* legacy ML bindings *}
ML {*
val monoI = @{thm monoI};
*}
end