src/FOL/ex/List.thy
author wenzelm
Fri, 19 Jan 2007 13:09:32 +0100
changeset 22085 c138cfd500f7
parent 17245 1c519a3cca59
permissions -rw-r--r--
ML context: full generic context, tuned signature;

(*  Title:      FOL/ex/list
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1991  University of Cambridge
*)

header {* Examples of simplification and induction on lists *}

theory List
imports Nat2
begin

typedecl 'a list
arities list :: ("term") "term"

consts
   hd           :: "'a list => 'a"
   tl           :: "'a list => 'a list"
   forall       :: "['a list, 'a => o] => o"
   len          :: "'a list => nat"
   at           :: "['a list, nat] => 'a"
   Nil          :: "'a list"                          ("[]")
   Cons         :: "['a, 'a list] => 'a list"         (infixr "." 80)
   app          :: "['a list, 'a list] => 'a list"    (infixr "++" 70)

axioms
 list_ind: "[| P([]);  ALL x l. P(l)-->P(x . l) |] ==> All(P)"

 forall_cong:
  "[| l = l';  !!x. P(x)<->P'(x) |] ==> forall(l,P) <-> forall(l',P')"

 list_distinct1: "~[] = x . l"
 list_distinct2: "~x . l = []"

 list_free:      "x . l = x' . l' <-> x=x' & l=l'"

 app_nil:        "[]++l = l"
 app_cons:       "(x . l)++l' = x .(l++l')"
 tl_eq:  "tl(m . q) = q"
 hd_eq:  "hd(m . q) = m"

 forall_nil: "forall([],P)"
 forall_cons: "forall(x . l,P) <-> P(x) & forall(l,P)"

 len_nil: "len([]) = 0"
 len_cons: "len(m . q) = succ(len(q))"

 at_0: "at(m . q,0) = m"
 at_succ: "at(m . q,succ(n)) = at(q,n)"

ML {* use_legacy_bindings (the_context ()) *}

end