src/FOL/ex/Nat2.thy
author wenzelm
Fri, 19 Jan 2007 13:09:32 +0100
changeset 22085 c138cfd500f7
parent 17245 1c519a3cca59
permissions -rw-r--r--
ML context: full generic context, tuned signature;

(*  Title:      FOL/ex/nat2.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1994  University of Cambridge
*)

header {* Theory for examples of simplification and induction on the natural numbers *}

theory Nat2
imports FOL
begin

typedecl nat
arities nat :: "term"

consts
  succ :: "nat => nat"
  pred :: "nat => nat"
  0 :: nat    ("0")
  add :: "[nat,nat] => nat"    (infixr "+" 90)
  lt :: "[nat,nat] => o"    (infixr "<" 70)
  leq :: "[nat,nat] => o"    (infixr "<=" 70)

axioms
 pred_0:         "pred(0) = 0"
 pred_succ:      "pred(succ(m)) = m"

 plus_0:         "0+n = n"
 plus_succ:      "succ(m)+n = succ(m+n)"

 nat_distinct1:  "~ 0=succ(n)"
 nat_distinct2:  "~ succ(m)=0"
 succ_inject:    "succ(m)=succ(n) <-> m=n"

 leq_0:          "0 <= n"
 leq_succ_succ:  "succ(m)<=succ(n) <-> m<=n"
 leq_succ_0:     "~ succ(m) <= 0"

 lt_0_succ:      "0 < succ(n)"
 lt_succ_succ:   "succ(m)<succ(n) <-> m<n"
 lt_0:           "~ m < 0"

 nat_ind:        "[| P(0); ALL n. P(n)-->P(succ(n)) |] ==> All(P)"

ML {* use_legacy_bindings (the_context ()) *}

end