src/HOL/ex/Lagrange.ML
author wenzelm
Thu, 30 Sep 1999 21:21:04 +0200
changeset 7664 c151ac595551
parent 5078 7b5ea59c0275
child 11375 a6730c90e753
permissions -rw-r--r--
insert: ignore facts;

(*  Title:      HOL/Integ/Lagrange.ML
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1996 TU Muenchen


The following lemma essentially shows that all composite natural numbers are
sums of fours squares, provided all prime numbers are. However, this is an
abstract thm about commutative rings and has a priori nothing to do with nat.
*)

Goalw [Lagrange.sq_def] "!!x1::'a::cring. \
\  (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = \
\  sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  + \
\  sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  + \
\  sq(x1*y3 - x2*y4 + x3*y1 + x4*y2)  + \
\  sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)";
(*Takes up to three minutes...*)
by (cring_tac 1);
qed "Lagrange_lemma";

(* A challenge by John Harrison.
   Takes forever because of the naive bottom-up strategy of the rewriter.

Goalw [Lagrange.sq_def] "!!p1::'a::cring.\
\ (sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * \
\ (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) \
\  = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + \
\    sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +\
\    sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +\
\    sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +\
\    sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +\
\    sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +\
\    sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +\
\    sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)";

*)