(* Title: Pure/pure_thy.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Theorem storage. Pure theory syntax and logical content.
*)
signature PURE_THY =
sig
val tag_rule: Markup.property -> thm -> thm
val untag_rule: string -> thm -> thm
val tag: Markup.property -> attribute
val untag: string -> attribute
val has_name_hint: thm -> bool
val get_name_hint: thm -> string
val put_name_hint: string -> thm -> thm
val get_group: thm -> string option
val put_group: string -> thm -> thm
val group: string -> attribute
val has_kind: thm -> bool
val get_kind: thm -> string
val kind_rule: string -> thm -> thm
val kind: string -> attribute
val kind_internal: attribute
val has_internal: Markup.property list -> bool
val is_internal: thm -> bool
val intern_fact: theory -> xstring -> string
val defined_fact: theory -> string -> bool
val get_fact: Context.generic -> theory -> Facts.ref -> thm list
val get_thms: theory -> xstring -> thm list
val get_thm: theory -> xstring -> thm
val theorems_of: theory -> thm list NameSpace.table
val facts_of: theory -> Facts.T
val thms_of: theory -> (string * thm) list
val all_thms_of: theory -> (string * thm) list
val hide_fact: bool -> string -> theory -> theory
val map_facts: ('a -> 'b) -> ('c * ('a list * 'd) list) list -> ('c * ('b list * 'd) list) list
val burrow_fact: ('a list -> 'b list) -> ('a list * 'c) list -> ('b list * 'c) list
val burrow_facts: ('a list -> 'b list) ->
('c * ('a list * 'd) list) list -> ('c * ('b list * 'd) list) list
val name_multi: string -> 'a list -> (string * 'a) list
val name_thm: bool -> bool -> string -> thm -> thm
val name_thms: bool -> bool -> string -> thm list -> thm list
val name_thmss: bool -> string -> (thm list * 'a) list -> (thm list * 'a) list
val store_thms: bstring * thm list -> theory -> thm list * theory
val store_thm: bstring * thm -> theory -> thm * theory
val store_thm_open: bstring * thm -> theory -> thm * theory
val add_thms: ((bstring * thm) * attribute list) list -> theory -> thm list * theory
val add_thmss: ((bstring * thm list) * attribute list) list -> theory -> thm list list * theory
val add_thms_dynamic: bstring * (Context.generic -> thm list) -> theory -> theory
val note: string -> string * thm -> theory -> thm * theory
val note_thmss: string -> ((bstring * attribute list) *
(Facts.ref * attribute list) list) list -> theory -> (bstring * thm list) list * theory
val note_thmss_i: string -> ((bstring * attribute list) *
(thm list * attribute list) list) list -> theory -> (bstring * thm list) list * theory
val note_thmss_grouped: string -> string -> ((bstring * attribute list) *
(thm list * attribute list) list) list -> theory -> (bstring * thm list) list * theory
val note_thmss_qualified: string -> string -> ((bstring * attribute list) *
(thm list * attribute list) list) list -> theory -> (bstring * thm list) list * theory
val add_axioms: ((bstring * string) * attribute list) list -> theory -> thm list * theory
val add_axioms_i: ((bstring * term) * attribute list) list -> theory -> thm list * theory
val add_defs: bool -> ((bstring * string) * attribute list) list ->
theory -> thm list * theory
val add_defs_i: bool -> ((bstring * term) * attribute list) list ->
theory -> thm list * theory
val add_defs_unchecked: bool -> ((bstring * string) * attribute list) list ->
theory -> thm list * theory
val add_defs_unchecked_i: bool -> ((bstring * term) * attribute list) list ->
theory -> thm list * theory
end;
structure PureThy: PURE_THY =
struct
(*** theorem tags ***)
(* add / delete tags *)
fun tag_rule tg = Thm.map_tags (insert (op =) tg);
fun untag_rule s = Thm.map_tags (filter_out (fn (s', _) => s = s'));
fun tag tg x = Thm.rule_attribute (K (tag_rule tg)) x;
fun untag s x = Thm.rule_attribute (K (untag_rule s)) x;
(* unofficial theorem names *)
fun the_name_hint thm = the (AList.lookup (op =) (Thm.get_tags thm) Markup.nameN);
val has_name_hint = can the_name_hint;
val get_name_hint = the_default "??.unknown" o try the_name_hint;
fun put_name_hint name = untag_rule Markup.nameN #> tag_rule (Markup.nameN, name);
(* theorem groups *)
fun get_group thm = AList.lookup (op =) (Thm.get_tags thm) Markup.groupN;
fun put_group name =
if name = "" then I else Thm.map_tags (AList.update (op =) (Markup.groupN, name));
fun group name = Thm.rule_attribute (K (put_group name));
(* theorem kinds *)
fun the_kind thm = the (AList.lookup (op =) (Thm.get_tags thm) Markup.kindN);
val has_kind = can the_kind;
val get_kind = the_default "" o try the_kind;
fun kind_rule k = tag_rule (Markup.kindN, k) o untag_rule Markup.kindN;
fun kind k x = if k = "" then x else Thm.rule_attribute (K (kind_rule k)) x;
fun kind_internal x = kind Thm.internalK x;
fun has_internal tags = exists (fn tg => tg = (Markup.kindN, Thm.internalK)) tags;
val is_internal = has_internal o Thm.get_tags;
(*** theorem database ***)
(** dataype theorems **)
datatype thms = Thms of
{theorems: thm list NameSpace.table, (* FIXME legacy *)
all_facts: Facts.T};
fun make_thms (theorems, all_facts) = Thms {theorems = theorems, all_facts = all_facts};
structure TheoremsData = TheoryDataFun
(
type T = thms;
val empty = make_thms (NameSpace.empty_table, Facts.empty);
val copy = I;
fun extend (Thms {theorems = _, all_facts}) = make_thms (NameSpace.empty_table, all_facts);
fun merge _
(Thms {theorems = _, all_facts = all_facts1},
Thms {theorems = _, all_facts = all_facts2}) =
make_thms (NameSpace.empty_table, Facts.merge (all_facts1, all_facts2));
);
fun map_theorems f =
TheoremsData.map (fn Thms {theorems, all_facts} => make_thms (f (theorems, all_facts)));
val get_theorems = (fn Thms args => args) o TheoremsData.get;
val theorems_of = #theorems o get_theorems;
val facts_of = #all_facts o get_theorems;
val intern_fact = Facts.intern o facts_of;
val defined_fact = Facts.defined o facts_of;
(** retrieve theorems **)
local
fun lookup_thms thy xname =
let
val (space, thms) = #theorems (get_theorems thy);
val name = NameSpace.intern space xname;
in Option.map (pair name) (Symtab.lookup thms name) end;
fun lookup_fact context thy xname =
let val name = intern_fact thy xname
in Option.map (pair name) (Facts.lookup context (facts_of thy) name) end;
in
fun get_fact context theory xthmref =
let
val xname = Facts.name_of_ref xthmref;
val pos = Facts.pos_of_ref xthmref;
val new_res = lookup_fact context theory xname;
val old_res = get_first (fn thy => lookup_thms thy xname) (theory :: Theory.ancestors_of theory);
val _ = Theory.check_thy theory;
in
(case (new_res, old_res) of
(SOME (_, ths1), SOME (_, ths2)) => Thm.eq_thms (ths1, ths2) orelse
error ("Fact lookup differs from old-style thm database:\n" ^
fst (the new_res) ^ " vs " ^ fst (the old_res) ^ Position.str_of pos)
| _ => true);
(case new_res of
NONE => error ("Unknown fact " ^ quote xname ^ Position.str_of pos)
| SOME (_, ths) => Facts.select xthmref (map (Thm.transfer theory) ths))
end;
fun get_thms thy = get_fact (Context.Theory thy) thy o Facts.named;
fun get_thm thy name = Facts.the_single name (get_thms thy name);
end;
(* thms_of etc. *)
fun thms_of thy =
let val thms = #2 (theorems_of thy)
in map (`(get_name_hint)) (maps snd (Symtab.dest thms)) end;
fun all_thms_of thy = maps thms_of (thy :: Theory.ancestors_of thy);
(** store theorems **)
(* hide names *)
fun hide_fact fully name =
map_theorems (fn (theorems, all_facts) => (theorems, Facts.hide fully name all_facts));
(* fact specifications *)
fun map_facts f = map (apsnd (map (apfst (map f))));
fun burrow_fact f = split_list #>> burrow f #> op ~~;
fun burrow_facts f = split_list ##> burrow (burrow_fact f) #> op ~~;
(* naming *)
fun name_multi name [x] = [(name, x)]
| name_multi "" xs = map (pair "") xs
| name_multi name xs = map_index (fn (i, x) => (name ^ "_" ^ string_of_int (i + 1), x)) xs;
fun name_thm pre official name thm = thm
|> (if Thm.get_name thm <> "" andalso pre orelse not official then I else Thm.put_name name)
|> (if has_name_hint thm andalso pre orelse name = "" then I else put_name_hint name)
|> Thm.map_tags (Position.default_properties (Position.thread_data ()));
fun name_thms pre official name xs =
map (uncurry (name_thm pre official)) (name_multi name xs);
fun name_thmss official name fact =
burrow_fact (name_thms true official name) fact;
(* enter_thms *)
fun enter_thms _ _ app_att ("", thms) thy = app_att (thy, thms) |> swap
| enter_thms pre_name post_name app_att (bname, thms) thy =
let
val naming = Sign.naming_of thy;
val name = NameSpace.full naming bname;
val (thy', thms') = apsnd (post_name name) (app_att (thy, pre_name name thms));
val thms'' = map (Thm.transfer thy') thms';
val thy'' = thy' |> map_theorems (fn ((space, theorems), all_facts) =>
let
val space' = NameSpace.declare naming name space;
val theorems' = Symtab.update (name, thms'') theorems;
val all_facts' = Facts.add_global naming (name, thms'') all_facts;
in ((space', theorems'), all_facts') end);
in (thms'', thy'') end;
(* store_thm(s) *)
val store_thms = enter_thms (name_thms true true) (name_thms false true) I;
fun store_thm (name, th) = store_thms (name, [th]) #>> the_single;
fun store_thm_open (name, th) =
enter_thms (name_thms true false) (name_thms false false) I (name, [th]) #>> the_single;
(* add_thms(s) *)
fun add_thms_atts pre_name ((bname, thms), atts) =
enter_thms pre_name (name_thms false true)
(foldl_map (Thm.theory_attributes atts)) (bname, thms);
fun gen_add_thmss pre_name =
fold_map (add_thms_atts pre_name);
fun gen_add_thms pre_name args =
apfst (map hd) o gen_add_thmss pre_name (map (apfst (apsnd single)) args);
val add_thmss = gen_add_thmss (name_thms true true);
val add_thms = gen_add_thms (name_thms true true);
(* add_thms_dynamic *)
fun add_thms_dynamic (bname, f) thy =
let
val name = Sign.full_name thy bname;
val thy' = thy |> map_theorems (fn (theorems, all_facts) =>
(theorems, Facts.add_dynamic (Sign.naming_of thy) (name, f) all_facts));
in thy' end;
(* note_thmss(_i) *)
local
fun gen_note_thmss get tag = fold_map (fn ((bname, more_atts), ths_atts) => fn thy =>
let
fun app (x, (ths, atts)) = foldl_map (Thm.theory_attributes atts) (x, ths);
val (thms, thy') = thy |> enter_thms
(name_thmss true) (name_thms false true) (apsnd flat o foldl_map app)
(bname, map (fn (ths, atts) => (get thy ths, surround tag (atts @ more_atts))) ths_atts);
in ((bname, thms), thy') end);
in
fun note_thmss k = gen_note_thmss (fn thy => get_fact (Context.Theory thy) thy) (kind k);
fun note_thmss_i k = gen_note_thmss (K I) (kind k);
fun note_thmss_grouped k g = gen_note_thmss (K I) (kind k #> group g);
end;
fun note kind (name, thm) =
note_thmss_i kind [((name, []), [([thm], [])])]
#>> (fn [(_, [thm])] => thm);
fun note_thmss_qualified k path facts thy =
thy
|> Sign.add_path path
|> Sign.no_base_names
|> note_thmss_i k facts
||> Sign.restore_naming thy;
(* store axioms as theorems *)
local
fun get_ax thy (name, _) = Thm.get_axiom_i thy (Sign.full_name thy name);
fun get_axs thy named_axs = map (Thm.forall_elim_vars 0 o get_ax thy) named_axs;
fun add_axm add = fold_map (fn ((name, ax), atts) => fn thy =>
let
val named_ax = [(name, ax)];
val thy' = add named_ax thy;
val thm = hd (get_axs thy' named_ax);
in apfst hd (gen_add_thms (K I) [((name, thm), atts)] thy') end);
in
val add_axioms = add_axm Theory.add_axioms;
val add_axioms_i = add_axm Theory.add_axioms_i;
val add_defs = add_axm o Theory.add_defs false;
val add_defs_i = add_axm o Theory.add_defs_i false;
val add_defs_unchecked = add_axm o Theory.add_defs true;
val add_defs_unchecked_i = add_axm o Theory.add_defs_i true;
end;
(*** Pure theory syntax and logical content ***)
val typ = SimpleSyntax.read_typ;
val term = SimpleSyntax.read_term;
val prop = SimpleSyntax.read_prop;
val _ = Context.>> (Context.map_theory
(Sign.add_types
[("fun", 2, NoSyn),
("prop", 0, NoSyn),
("itself", 1, NoSyn),
("dummy", 0, NoSyn)]
#> Sign.add_nonterminals Syntax.basic_nonterms
#> Sign.add_syntax_i
[("_lambda", typ "pttrns => 'a => logic", Mixfix ("(3%_./ _)", [0, 3], 3)),
("_abs", typ "'a", NoSyn),
("", typ "'a => args", Delimfix "_"),
("_args", typ "'a => args => args", Delimfix "_,/ _"),
("", typ "id => idt", Delimfix "_"),
("_idtdummy", typ "idt", Delimfix "'_"),
("_idtyp", typ "id => type => idt", Mixfix ("_::_", [], 0)),
("_idtypdummy", typ "type => idt", Mixfix ("'_()::_", [], 0)),
("", typ "idt => idt", Delimfix "'(_')"),
("", typ "idt => idts", Delimfix "_"),
("_idts", typ "idt => idts => idts", Mixfix ("_/ _", [1, 0], 0)),
("", typ "idt => pttrn", Delimfix "_"),
("", typ "pttrn => pttrns", Delimfix "_"),
("_pttrns", typ "pttrn => pttrns => pttrns", Mixfix ("_/ _", [1, 0], 0)),
("", typ "id => aprop", Delimfix "_"),
("", typ "longid => aprop", Delimfix "_"),
("", typ "var => aprop", Delimfix "_"),
("_DDDOT", typ "aprop", Delimfix "..."),
("_aprop", typ "aprop => prop", Delimfix "PROP _"),
("_asm", typ "prop => asms", Delimfix "_"),
("_asms", typ "prop => asms => asms", Delimfix "_;/ _"),
("_bigimpl", typ "asms => prop => prop", Mixfix ("((3[| _ |])/ ==> _)", [0, 1], 1)),
("_ofclass", typ "type => logic => prop", Delimfix "(1OFCLASS/(1'(_,/ _')))"),
("_mk_ofclass", typ "dummy", NoSyn),
("_TYPE", typ "type => logic", Delimfix "(1TYPE/(1'(_')))"),
("", typ "id => logic", Delimfix "_"),
("", typ "longid => logic", Delimfix "_"),
("", typ "var => logic", Delimfix "_"),
("_DDDOT", typ "logic", Delimfix "..."),
("_constify", typ "num => num_const", Delimfix "_"),
("_indexnum", typ "num_const => index", Delimfix "\\<^sub>_"),
("_index", typ "logic => index", Delimfix "(00\\<^bsub>_\\<^esub>)"),
("_indexdefault", typ "index", Delimfix ""),
("_indexvar", typ "index", Delimfix "'\\<index>"),
("_struct", typ "index => logic", Mixfix ("\\<struct>_", [1000], 1000)),
("==>", typ "prop => prop => prop", Delimfix "op ==>"),
(Term.dummy_patternN, typ "aprop", Delimfix "'_"),
("_appl", typ "('b => 'a) => args => logic", Mixfix ("(1_/(1'(_')))", [1000, 0], 1000)),
("_appl", typ "('b => 'a) => args => aprop", Mixfix ("(1_/(1'(_')))", [1000, 0], 1000))]
#> Sign.add_modesyntax_i (Symbol.xsymbolsN, true)
[("fun", typ "type => type => type", Mixfix ("(_/ \\<Rightarrow> _)", [1, 0], 0)),
("_bracket", typ "types => type => type", Mixfix ("([_]/ \\<Rightarrow> _)", [0, 0], 0)),
("_ofsort", typ "tid => sort => type", Mixfix ("_\\<Colon>_", [1000, 0], 1000)),
("_constrain", typ "'a => type => 'a", Mixfix ("_\\<Colon>_", [4, 0], 3)),
("_idtyp", typ "id => type => idt", Mixfix ("_\\<Colon>_", [], 0)),
("_idtypdummy", typ "type => idt", Mixfix ("'_()\\<Colon>_", [], 0)),
("_type_constraint_", typ "'a", NoSyn),
("_lambda", typ "pttrns => 'a => logic", Mixfix ("(3\\<lambda>_./ _)", [0, 3], 3)),
("==", typ "'a => 'a => prop", InfixrName ("\\<equiv>", 2)),
("all_binder", typ "idts => prop => prop", Mixfix ("(3\\<And>_./ _)", [0, 0], 0)),
("==>", typ "prop => prop => prop", InfixrName ("\\<Longrightarrow>", 1)),
("_DDDOT", typ "aprop", Delimfix "\\<dots>"),
("_bigimpl", typ "asms => prop => prop", Mixfix ("((1\\<lbrakk>_\\<rbrakk>)/ \\<Longrightarrow> _)", [0, 1], 1)),
("_DDDOT", typ "logic", Delimfix "\\<dots>")]
#> Sign.add_modesyntax_i ("", false)
[("prop", typ "prop => prop", Mixfix ("_", [0], 0)),
("Pure.term", typ "'a => prop", Delimfix "TERM _"),
("Pure.conjunction", typ "prop => prop => prop", InfixrName ("&&", 2))]
#> Sign.add_modesyntax_i ("HTML", false)
[("_lambda", typ "pttrns => 'a => logic", Mixfix ("(3\\<lambda>_./ _)", [0, 3], 3))]
#> Sign.add_consts_i
[("==", typ "'a => 'a => prop", InfixrName ("==", 2)),
("==>", typ "prop => prop => prop", Mixfix ("(_/ ==> _)", [2, 1], 1)),
("all", typ "('a => prop) => prop", Binder ("!!", 0, 0)),
("prop", typ "prop => prop", NoSyn),
("TYPE", typ "'a itself", NoSyn),
(Term.dummy_patternN, typ "'a", Delimfix "'_")]
#> Theory.add_deps "==" ("==", typ "'a => 'a => prop") []
#> Theory.add_deps "==>" ("==>", typ "prop => prop => prop") []
#> Theory.add_deps "all" ("all", typ "('a => prop) => prop") []
#> Theory.add_deps "TYPE" ("TYPE", typ "'a itself") []
#> Theory.add_deps Term.dummy_patternN (Term.dummy_patternN, typ "'a") []
#> Sign.add_trfuns Syntax.pure_trfuns
#> Sign.add_trfunsT Syntax.pure_trfunsT
#> Sign.local_path
#> Sign.add_consts_i
[("term", typ "'a => prop", NoSyn),
("conjunction", typ "prop => prop => prop", NoSyn)]
#> (add_defs_i false o map Thm.no_attributes)
[("prop_def", prop "(CONST prop :: prop => prop) (A::prop) == A::prop"),
("term_def", prop "(CONST Pure.term :: 'a => prop) (x::'a) == (!!A::prop. A ==> A)"),
("conjunction_def", prop "(A && B) == (!!C::prop. (A ==> B ==> C) ==> C)")] #> snd
#> Sign.hide_const false "Pure.conjunction"
#> Sign.hide_const false "Pure.term"
#> add_thmss [(("nothing", []), [])] #> snd
#> Theory.add_axioms_i Proofterm.equality_axms));
end;