fine-tuned elimination of comprehensions involving x=t.
header{*Examples of Reasoning in ZF Set Theory*}
theory ZF_examples imports Main_ZFC begin
subsection {* Binary Trees *}
consts
bt :: "i => i"
datatype "bt(A)" =
Lf | Br ("a \<in> A", "t1 \<in> bt(A)", "t2 \<in> bt(A)")
declare bt.intros [simp]
text{*Induction via tactic emulation*}
lemma Br_neq_left [rule_format]: "l \<in> bt(A) ==> \<forall>x r. Br(x, l, r) \<noteq> l"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (induct_tac l)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply auto
done
(*
apply (Inductive.case_tac l)
apply (tactic {*exhaust_tac "l" 1*})
*)
text{*The new induction method, which I don't understand*}
lemma Br_neq_left': "l \<in> bt(A) ==> (!!x r. Br(x, l, r) \<noteq> l)"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (induct set: bt)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply auto
done
lemma Br_iff: "Br(a,l,r) = Br(a',l',r') <-> a=a' & l=l' & r=r'"
-- "Proving a freeness theorem."
by (blast elim!: bt.free_elims)
inductive_cases Br_in_bt: "Br(a,l,r) \<in> bt(A)"
-- "An elimination rule, for type-checking."
text {*
@{thm[display] Br_in_bt[no_vars]}
*};
subsection{*Primitive recursion*}
consts n_nodes :: "i => i"
primrec
"n_nodes(Lf) = 0"
"n_nodes(Br(a,l,r)) = succ(n_nodes(l) #+ n_nodes(r))"
lemma n_nodes_type [simp]: "t \<in> bt(A) ==> n_nodes(t) \<in> nat"
by (induct_tac t, auto)
consts n_nodes_aux :: "i => i"
primrec
"n_nodes_aux(Lf) = (\<lambda>k \<in> nat. k)"
"n_nodes_aux(Br(a,l,r)) =
(\<lambda>k \<in> nat. n_nodes_aux(r) ` (n_nodes_aux(l) ` succ(k)))"
lemma n_nodes_aux_eq [rule_format]:
"t \<in> bt(A) ==> \<forall>k \<in> nat. n_nodes_aux(t)`k = n_nodes(t) #+ k"
by (induct_tac t, simp_all)
constdefs n_nodes_tail :: "i => i"
"n_nodes_tail(t) == n_nodes_aux(t) ` 0"
lemma "t \<in> bt(A) ==> n_nodes_tail(t) = n_nodes(t)"
by (simp add: n_nodes_tail_def n_nodes_aux_eq)
subsection {*Inductive definitions*}
consts Fin :: "i=>i"
inductive
domains "Fin(A)" \<subseteq> "Pow(A)"
intros
emptyI: "0 \<in> Fin(A)"
consI: "[| a \<in> A; b \<in> Fin(A) |] ==> cons(a,b) \<in> Fin(A)"
type_intros empty_subsetI cons_subsetI PowI
type_elims PowD [THEN revcut_rl]
consts acc :: "i => i"
inductive
domains "acc(r)" \<subseteq> "field(r)"
intros
vimage: "[| r-``{a}: Pow(acc(r)); a \<in> field(r) |] ==> a \<in> acc(r)"
monos Pow_mono
consts
llist :: "i=>i";
codatatype
"llist(A)" = LNil | LCons ("a \<in> A", "l \<in> llist(A)")
(*Coinductive definition of equality*)
consts
lleq :: "i=>i"
(*Previously used <*> in the domain and variant pairs as elements. But
standard pairs work just as well. To use variant pairs, must change prefix
a q/Q to the Sigma, Pair and converse rules.*)
coinductive
domains "lleq(A)" \<subseteq> "llist(A) * llist(A)"
intros
LNil: "<LNil, LNil> \<in> lleq(A)"
LCons: "[| a \<in> A; <l,l'> \<in> lleq(A) |]
==> <LCons(a,l), LCons(a,l')> \<in> lleq(A)"
type_intros llist.intros
subsection{*Powerset example*}
lemma Pow_mono: "A\<subseteq>B ==> Pow(A) \<subseteq> Pow(B)"
apply (rule subsetI)
apply (rule PowI)
apply (drule PowD)
apply (erule subset_trans, assumption)
done
lemma "Pow(A Int B) = Pow(A) Int Pow(B)"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule equalityI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule Int_greatest)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule Int_lower1 [THEN Pow_mono])
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule Int_lower2 [THEN Pow_mono])
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule subsetI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule IntE)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule PowI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (drule PowD)+
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule Int_greatest)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (assumption+)
done
text{*Trying again from the beginning in order to use @{text blast}*}
lemma "Pow(A Int B) = Pow(A) Int Pow(B)"
by blast
lemma "C\<subseteq>D ==> Union(C) \<subseteq> Union(D)"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule subsetI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule UnionE)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule UnionI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule subsetD)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
--{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
done
text{*A more abstract version of the same proof*}
lemma "C\<subseteq>D ==> Union(C) \<subseteq> Union(D)"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule Union_least)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule Union_upper)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule subsetD, assumption)
done
lemma "[| a \<in> A; f \<in> A->B; g \<in> C->D; A \<inter> C = 0 |] ==> (f \<union> g)`a = f`a"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule apply_equality)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule UnI1)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule apply_Pair)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
--{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule fun_disjoint_Un)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
--{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
--{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
done
end