(* Title: Sequents/LK/Propositional.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
section \<open>Classical sequent calculus: examples with propositional connectives\<close>
theory Propositional
imports "../LK"
begin
text "absorptive laws of \<and> and \<or>"
lemma "\<turnstile> P \<and> P \<longleftrightarrow> P"
by fast_prop
lemma "\<turnstile> P \<or> P \<longleftrightarrow> P"
by fast_prop
text "commutative laws of \<and> and \<or>"
lemma "\<turnstile> P \<and> Q \<longleftrightarrow> Q \<and> P"
by fast_prop
lemma "\<turnstile> P \<or> Q \<longleftrightarrow> Q \<or> P"
by fast_prop
text "associative laws of \<and> and \<or>"
lemma "\<turnstile> (P \<and> Q) \<and> R \<longleftrightarrow> P \<and> (Q \<and> R)"
by fast_prop
lemma "\<turnstile> (P \<or> Q) \<or> R \<longleftrightarrow> P \<or> (Q \<or> R)"
by fast_prop
text "distributive laws of \<and> and \<or>"
lemma "\<turnstile> (P \<and> Q) \<or> R \<longleftrightarrow> (P \<or> R) \<and> (Q \<or> R)"
by fast_prop
lemma "\<turnstile> (P \<or> Q) \<and> R \<longleftrightarrow> (P \<and> R) \<or> (Q \<and> R)"
by fast_prop
text "Laws involving implication"
lemma "\<turnstile> (P \<or> Q \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> R) \<and> (Q \<longrightarrow> R)"
by fast_prop
lemma "\<turnstile> (P \<and> Q \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> (Q \<longrightarrow> R))"
by fast_prop
lemma "\<turnstile> (P \<longrightarrow> Q \<and> R) \<longleftrightarrow> (P \<longrightarrow> Q) \<and> (P \<longrightarrow> R)"
by fast_prop
text "Classical theorems"
lemma "\<turnstile> P \<or> Q \<longrightarrow> P \<or> \<not> P \<and> Q"
by fast_prop
lemma "\<turnstile> (P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R) \<longrightarrow> (P \<and> Q \<or> R)"
by fast_prop
lemma "\<turnstile> P \<and> Q \<or> \<not> P \<and> R \<longleftrightarrow> (P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R)"
by fast_prop
lemma "\<turnstile> (P \<longrightarrow> Q) \<or> (P \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)"
by fast_prop
(*If and only if*)
lemma "\<turnstile> (P \<longleftrightarrow> Q) \<longleftrightarrow> (Q \<longleftrightarrow> P)"
by fast_prop
lemma "\<turnstile> \<not> (P \<longleftrightarrow> \<not> P)"
by fast_prop
(*Sample problems from
F. J. Pelletier,
Seventy-Five Problems for Testing Automatic Theorem Provers,
J. Automated Reasoning 2 (1986), 191-216.
Errata, JAR 4 (1988), 236-236.
*)
(*1*)
lemma "\<turnstile> (P \<longrightarrow> Q) \<longleftrightarrow> (\<not> Q \<longrightarrow> \<not> P)"
by fast_prop
(*2*)
lemma "\<turnstile> \<not> \<not> P \<longleftrightarrow> P"
by fast_prop
(*3*)
lemma "\<turnstile> \<not> (P \<longrightarrow> Q) \<longrightarrow> (Q \<longrightarrow> P)"
by fast_prop
(*4*)
lemma "\<turnstile> (\<not> P \<longrightarrow> Q) \<longleftrightarrow> (\<not> Q \<longrightarrow> P)"
by fast_prop
(*5*)
lemma "\<turnstile> ((P \<or> Q) \<longrightarrow> (P \<or> R)) \<longrightarrow> (P \<or> (Q \<longrightarrow> R))"
by fast_prop
(*6*)
lemma "\<turnstile> P \<or> \<not> P"
by fast_prop
(*7*)
lemma "\<turnstile> P \<or> \<not> \<not> \<not> P"
by fast_prop
(*8. Peirce's law*)
lemma "\<turnstile> ((P \<longrightarrow> Q) \<longrightarrow> P) \<longrightarrow> P"
by fast_prop
(*9*)
lemma "\<turnstile> ((P \<or> Q) \<and> (\<not> P \<or> Q) \<and> (P \<or> \<not> Q)) \<longrightarrow> \<not> (\<not> P \<or> \<not> Q)"
by fast_prop
(*10*)
lemma "Q \<longrightarrow> R, R \<longrightarrow> P \<and> Q, P \<longrightarrow> (Q \<or> R) \<turnstile> P \<longleftrightarrow> Q"
by fast_prop
(*11. Proved in each direction (incorrectly, says Pelletier!!) *)
lemma "\<turnstile> P \<longleftrightarrow> P"
by fast_prop
(*12. "Dijkstra's law"*)
lemma "\<turnstile> ((P \<longleftrightarrow> Q) \<longleftrightarrow> R) \<longleftrightarrow> (P \<longleftrightarrow> (Q \<longleftrightarrow> R))"
by fast_prop
(*13. Distributive law*)
lemma "\<turnstile> P \<or> (Q \<and> R) \<longleftrightarrow> (P \<or> Q) \<and> (P \<or> R)"
by fast_prop
(*14*)
lemma "\<turnstile> (P \<longleftrightarrow> Q) \<longleftrightarrow> ((Q \<or> \<not> P) \<and> (\<not> Q \<or> P))"
by fast_prop
(*15*)
lemma "\<turnstile> (P \<longrightarrow> Q) \<longleftrightarrow> (\<not> P \<or> Q)"
by fast_prop
(*16*)
lemma "\<turnstile> (P \<longrightarrow> Q) \<or> (Q \<longrightarrow> P)"
by fast_prop
(*17*)
lemma "\<turnstile> ((P \<and> (Q \<longrightarrow> R)) \<longrightarrow> S) \<longleftrightarrow> ((\<not> P \<or> Q \<or> S) \<and> (\<not> P \<or> \<not> R \<or> S))"
by fast_prop
end