/* Title: Pure/General/graph.scala
Module: PIDE
Author: Makarius
Directed graphs.
*/
package isabelle
import scala.annotation.tailrec
object Graph
{
class Duplicate[Key](x: Key) extends Exception
class Undefined[Key](x: Key) extends Exception
class Cycles[Key](cycles: List[List[Key]]) extends Exception
def empty[Key, A]: Graph[Key, A] = new Graph[Key, A](Map.empty)
}
class Graph[Key, A] private(rep: Map[Key, (A, (Set[Key], Set[Key]))])
extends Iterable[(Key, (A, (Set[Key], Set[Key])))]
{
type Keys = Set[Key]
type Entry = (A, (Keys, Keys))
def iterator: Iterator[(Key, Entry)] = rep.iterator
def is_empty: Boolean = rep.isEmpty
def keys: Set[Key] = rep.keySet.toSet
def dest: List[(Key, List[Key])] =
(for ((x, (_, (_, succs))) <- iterator) yield (x, succs.toList)).toList
/* entries */
private def get_entry(x: Key): Entry =
rep.get(x) match {
case Some(entry) => entry
case None => throw new Graph.Undefined(x)
}
private def map_entry(x: Key, f: Entry => Entry): Graph[Key, A] =
new Graph[Key, A](rep + (x -> f(get_entry(x))))
/* nodes */
def get_node(x: Key): A = get_entry(x)._1
def map_node(x: Key, f: A => A): Graph[Key, A] =
map_entry(x, { case (i, ps) => (f(i), ps) })
def map_nodes[B](f: A => B): Graph[Key, B] =
new Graph[Key, B](rep mapValues { case (i, ps) => (f(i), ps) })
/* reachability */
/*nodes reachable from xs -- topologically sorted for acyclic graphs*/
def reachable(next: Key => Keys, xs: List[Key]): (List[List[Key]], Keys) =
{
def reach(reached: (List[Key], Keys), x: Key): (List[Key], Keys) =
{
val (rs, r_set) = reached
if (r_set(x)) reached
else {
val (rs1, r_set1) = ((rs, r_set + x) /: next(x))(reach)
(x :: rs1, r_set1)
}
}
def reachs(reached: (List[List[Key]], Keys), x: Key): (List[List[Key]], Keys) =
{
val (rss, r_set) = reached
val (rs, r_set1) = reach((Nil, r_set), x)
(rs :: rss, r_set1)
}
((List.empty[List[Key]], Set.empty[Key]) /: xs)(reachs)
}
/*immediate*/
def imm_preds(x: Key): Keys = get_entry(x)._2._1
def imm_succs(x: Key): Keys = get_entry(x)._2._2
/*transitive*/
def all_preds(xs: List[Key]): List[Key] = reachable(imm_preds, xs)._1.flatten
def all_succs(xs: List[Key]): List[Key] = reachable(imm_succs, xs)._1.flatten
/*strongly connected components; see: David King and John Launchbury,
"Structuring Depth First Search Algorithms in Haskell"*/
def strong_conn: List[List[Key]] =
reachable(imm_preds, all_succs(keys.toList))._1.filterNot(_.isEmpty).reverse
/* minimal and maximal elements */
def minimals: List[Key] =
(List.empty[Key] /: rep) {
case (ms, (m, (_, (preds, _)))) => if (preds.isEmpty) m :: ms else ms }
def maximals: List[Key] =
(List.empty[Key] /: rep) {
case (ms, (m, (_, (_, succs)))) => if (succs.isEmpty) m :: ms else ms }
def is_minimal(x: Key): Boolean = imm_preds(x).isEmpty
def is_maximal(x: Key): Boolean = imm_succs(x).isEmpty
/* nodes */
def new_node(x: Key, info: A): Graph[Key, A] =
{
if (rep.isDefinedAt(x)) throw new Graph.Duplicate(x)
else new Graph[Key, A](rep + (x -> (info, (Set.empty, Set.empty))))
}
def default_node(x: Key, info: A): Graph[Key, A] =
{
if (rep.isDefinedAt(x)) this
else new_node(x, info)
}
def del_nodes(xs: List[Key]): Graph[Key, A] =
{
xs.foreach(get_entry)
new Graph[Key, A](
(rep -- xs) mapValues { case (i, (preds, succs)) => (i, (preds -- xs, succs -- xs)) })
}
private def del_adjacent(fst: Boolean, x: Key)(map: Map[Key, Entry], y: Key): Map[Key, Entry] =
map.get(y) match {
case None => map
case Some((i, (preds, succs))) =>
map + (y -> (i, if (fst) (preds - x, succs) else (preds, succs - x)))
}
def del_node(x: Key): Graph[Key, A] =
{
val (preds, succs) = get_entry(x)._2
new Graph[Key, A](
(((rep - x) /: preds)(del_adjacent(false, x)) /: succs)(del_adjacent(true, x)))
}
def restrict(pred: Key => Boolean): Graph[Key, A] =
(this /: iterator){ case (graph, (x, _)) => if (!pred(x)) graph.del_node(x) else graph }
/* edges */
def is_edge(x: Key, y: Key): Boolean =
try { imm_succs(x)(y) }
catch { case _: Graph.Undefined[_] => false }
def add_edge(x: Key, y: Key): Graph[Key, A] =
if (is_edge(x, y)) this
else
map_entry(y, { case (i, (preds, succs)) => (i, (preds + x, succs)) }).
map_entry(x, { case (i, (preds, succs)) => (i, (preds, succs + y)) })
def del_edge(x: Key, y: Key): Graph[Key, A] =
if (is_edge(x, y))
map_entry(y, { case (i, (preds, succs)) => (i, (preds - x, succs)) }).
map_entry(x, { case (i, (preds, succs)) => (i, (preds, succs - y)) })
else this
/* irreducible paths -- Hasse diagram */
def irreducible_preds(x_set: Set[Key], path: List[Key], z: Key): List[Key] =
{
def red(x: Key)(x1: Key) = is_edge(x, x1) && x1 != z
@tailrec def irreds(xs0: List[Key], xs1: List[Key]): List[Key] =
xs0 match {
case Nil => xs1
case x :: xs =>
if (!(x_set(x)) || x == z || path.contains(x) ||
xs.exists(red(x)) || xs1.exists(red(x)))
irreds(xs, xs1)
else irreds(xs, x :: xs1)
}
irreds(imm_preds(z).toList, Nil)
}
def irreducible_paths(x: Key, y: Key): List[List[Key]] =
{
val (_, x_set) = reachable(imm_succs, List(x))
def paths(path: List[Key])(ps: List[List[Key]], z: Key): List[List[Key]] =
if (x == z) (z :: path) :: ps
else (ps /: irreducible_preds(x_set, path, z))(paths(z :: path))
if ((x == y) && !is_edge(x, x)) List(Nil) else paths(Nil)(Nil, y)
}
/* maintain acyclic graphs */
def add_edge_acyclic(x: Key, y: Key): Graph[Key, A] =
if (is_edge(x, y)) this
else {
irreducible_paths(y, x) match {
case Nil => add_edge(x, y)
case cycles => throw new Graph.Cycles(cycles.map(x :: _))
}
}
def add_deps_cyclic(y: Key, xs: List[Key]): Graph[Key, A] =
(this /: xs)(_.add_edge_acyclic(_, y))
def topological_order: List[Key] = all_succs(minimals)
}