(* Title: Pure/Isar/proof_context.ML
Author: Markus Wenzel, TU Muenchen
The key concept of Isar proof contexts: elevates primitive local
reasoning Gamma |- phi to a structured concept, with generic context
elements. See also structure Variable and Assumption.
*)
signature PROOF_CONTEXT =
sig
val theory_of: Proof.context -> theory
val init_global: theory -> Proof.context
val get_global: theory -> string -> Proof.context
type mode
val mode_default: mode
val mode_stmt: mode
val mode_pattern: mode
val mode_schematic: mode
val mode_abbrev: mode
val set_mode: mode -> Proof.context -> Proof.context
val get_mode: Proof.context -> mode
val restore_mode: Proof.context -> Proof.context -> Proof.context
val abbrev_mode: Proof.context -> bool
val set_stmt: bool -> Proof.context -> Proof.context
val syntax_of: Proof.context -> Local_Syntax.T
val syn_of: Proof.context -> Syntax.syntax
val tsig_of: Proof.context -> Type.tsig
val set_defsort: sort -> Proof.context -> Proof.context
val default_sort: Proof.context -> indexname -> sort
val consts_of: Proof.context -> Consts.T
val set_syntax_mode: Syntax.mode -> Proof.context -> Proof.context
val restore_syntax_mode: Proof.context -> Proof.context -> Proof.context
val facts_of: Proof.context -> Facts.T
val cases_of: Proof.context -> (string * (Rule_Cases.T * bool)) list
val map_naming: (Name_Space.naming -> Name_Space.naming) -> Proof.context -> Proof.context
val naming_of: Proof.context -> Name_Space.naming
val restore_naming: Proof.context -> Proof.context -> Proof.context
val full_name: Proof.context -> binding -> string
val class_space: Proof.context -> Name_Space.T
val type_space: Proof.context -> Name_Space.T
val const_space: Proof.context -> Name_Space.T
val intern_class: Proof.context -> xstring -> string
val intern_type: Proof.context -> xstring -> string
val intern_const: Proof.context -> xstring -> string
val extern_class: Proof.context -> string -> xstring
val extern_type: Proof.context -> string -> xstring
val extern_const: Proof.context -> string -> xstring
val transfer_syntax: theory -> Proof.context -> Proof.context
val transfer: theory -> Proof.context -> Proof.context
val background_theory: (theory -> theory) -> Proof.context -> Proof.context
val background_theory_result: (theory -> 'a * theory) -> Proof.context -> 'a * Proof.context
val extern_fact: Proof.context -> string -> xstring
val pretty_term_abbrev: Proof.context -> term -> Pretty.T
val markup_fact: Proof.context -> string -> Markup.T
val pretty_fact: Proof.context -> string * thm list -> Pretty.T
val read_class: Proof.context -> xstring -> class
val read_typ: Proof.context -> string -> typ
val read_typ_syntax: Proof.context -> string -> typ
val read_typ_abbrev: Proof.context -> string -> typ
val cert_typ: Proof.context -> typ -> typ
val cert_typ_syntax: Proof.context -> typ -> typ
val cert_typ_abbrev: Proof.context -> typ -> typ
val infer_type: Proof.context -> string * typ -> typ
val inferred_param: string -> Proof.context -> typ * Proof.context
val inferred_fixes: Proof.context -> (string * typ) list * Proof.context
val read_type_name: Proof.context -> bool -> string -> typ
val read_type_name_proper: Proof.context -> bool -> string -> typ
val read_const_proper: Proof.context -> bool -> string -> term
val read_const: Proof.context -> bool -> typ -> string -> term
val read_arity: Proof.context -> xstring * string list * string -> arity
val cert_arity: Proof.context -> arity -> arity
val allow_dummies: Proof.context -> Proof.context
val prepare_sortsT: Proof.context -> typ list -> string * typ list
val prepare_sorts: Proof.context -> term list -> string * term list
val check_tfree: Proof.context -> string * sort -> string * sort
val intern_skolem: Proof.context -> string -> string option
val read_term_pattern: Proof.context -> string -> term
val read_term_schematic: Proof.context -> string -> term
val read_term_abbrev: Proof.context -> string -> term
val show_abbrevs_raw: Config.raw
val show_abbrevs: bool Config.T
val expand_abbrevs: Proof.context -> term -> term
val cert_term: Proof.context -> term -> term
val cert_prop: Proof.context -> term -> term
val def_type: Proof.context -> indexname -> typ option
val standard_typ_check: Proof.context -> typ list -> typ list
val standard_term_check_finish: Proof.context -> term list -> term list
val standard_term_uncheck: Proof.context -> term list -> term list
val goal_export: Proof.context -> Proof.context -> thm list -> thm list
val export: Proof.context -> Proof.context -> thm list -> thm list
val export_morphism: Proof.context -> Proof.context -> morphism
val norm_export_morphism: Proof.context -> Proof.context -> morphism
val bind_terms: (indexname * term option) list -> Proof.context -> Proof.context
val auto_bind_goal: term list -> Proof.context -> Proof.context
val auto_bind_facts: term list -> Proof.context -> Proof.context
val match_bind: bool -> (string list * string) list -> Proof.context -> term list * Proof.context
val match_bind_i: bool -> (term list * term) list -> Proof.context -> term list * Proof.context
val read_propp: (string * string list) list list -> Proof.context ->
(term * term list) list list * Proof.context
val cert_propp: (term * term list) list list -> Proof.context ->
(term * term list) list list * Proof.context
val read_propp_schematic: (string * string list) list list -> Proof.context ->
(term * term list) list list * Proof.context
val cert_propp_schematic: (term * term list) list list -> Proof.context ->
(term * term list) list list * Proof.context
val bind_propp: (string * string list) list list -> Proof.context ->
(term list list * (Proof.context -> Proof.context)) * Proof.context
val bind_propp_i: (term * term list) list list -> Proof.context ->
(term list list * (Proof.context -> Proof.context)) * Proof.context
val bind_propp_schematic: (string * string list) list list -> Proof.context ->
(term list list * (Proof.context -> Proof.context)) * Proof.context
val bind_propp_schematic_i: (term * term list) list list -> Proof.context ->
(term list list * (Proof.context -> Proof.context)) * Proof.context
val fact_tac: thm list -> int -> tactic
val some_fact_tac: Proof.context -> int -> tactic
val get_fact: Proof.context -> Facts.ref -> thm list
val get_fact_single: Proof.context -> Facts.ref -> thm
val get_thms: Proof.context -> xstring -> thm list
val get_thm: Proof.context -> xstring -> thm
val note_thmss: string -> (Thm.binding * (thm list * attribute list) list) list ->
Proof.context -> (string * thm list) list * Proof.context
val put_thms: bool -> string * thm list option -> Proof.context -> Proof.context
val read_vars: (binding * string option * mixfix) list -> Proof.context ->
(binding * typ option * mixfix) list * Proof.context
val cert_vars: (binding * typ option * mixfix) list -> Proof.context ->
(binding * typ option * mixfix) list * Proof.context
val add_fixes: (binding * typ option * mixfix) list -> Proof.context ->
string list * Proof.context
val add_assms: Assumption.export ->
(Thm.binding * (string * string list) list) list ->
Proof.context -> (string * thm list) list * Proof.context
val add_assms_i: Assumption.export ->
(Thm.binding * (term * term list) list) list ->
Proof.context -> (string * thm list) list * Proof.context
val add_cases: bool -> (string * Rule_Cases.T option) list -> Proof.context -> Proof.context
val apply_case: Rule_Cases.T -> Proof.context -> (string * term list) list * Proof.context
val get_case: Proof.context -> string -> binding option list -> Rule_Cases.T
val type_notation: bool -> Syntax.mode -> (typ * mixfix) list -> Proof.context -> Proof.context
val notation: bool -> Syntax.mode -> (term * mixfix) list -> Proof.context -> Proof.context
val generic_type_notation: bool -> Syntax.mode -> (typ * mixfix) list -> morphism ->
Context.generic -> Context.generic
val generic_notation: bool -> Syntax.mode -> (term * mixfix) list -> morphism ->
Context.generic -> Context.generic
val class_alias: binding -> class -> Proof.context -> Proof.context
val type_alias: binding -> string -> Proof.context -> Proof.context
val const_alias: binding -> string -> Proof.context -> Proof.context
val add_const_constraint: string * typ option -> Proof.context -> Proof.context
val add_abbrev: string -> binding * term -> Proof.context -> (term * term) * Proof.context
val revert_abbrev: string -> string -> Proof.context -> Proof.context
val generic_add_abbrev: string -> binding * term -> Context.generic ->
(term * term) * Context.generic
val generic_revert_abbrev: string -> string -> Context.generic -> Context.generic
val print_syntax: Proof.context -> unit
val print_abbrevs: Proof.context -> unit
val print_binds: Proof.context -> unit
val print_lthms: Proof.context -> unit
val print_cases: Proof.context -> unit
val debug: bool Config.T
val verbose: bool Config.T
val pretty_ctxt: Proof.context -> Pretty.T list
val pretty_context: Proof.context -> Pretty.T list
end;
structure Proof_Context: PROOF_CONTEXT =
struct
val theory_of = Proof_Context.theory_of;
val init_global = Proof_Context.init_global;
val get_global = Proof_Context.get_global;
(** inner syntax mode **)
datatype mode =
Mode of
{stmt: bool, (*inner statement mode*)
pattern: bool, (*pattern binding schematic variables*)
schematic: bool, (*term referencing loose schematic variables*)
abbrev: bool}; (*abbrev mode -- no normalization*)
fun make_mode (stmt, pattern, schematic, abbrev) =
Mode {stmt = stmt, pattern = pattern, schematic = schematic, abbrev = abbrev};
val mode_default = make_mode (false, false, false, false);
val mode_stmt = make_mode (true, false, false, false);
val mode_pattern = make_mode (false, true, false, false);
val mode_schematic = make_mode (false, false, true, false);
val mode_abbrev = make_mode (false, false, false, true);
(** Isar proof context information **)
datatype data =
Data of
{mode: mode, (*inner syntax mode*)
syntax: Local_Syntax.T, (*local syntax*)
tsig: Type.tsig * Type.tsig, (*local/global type signature -- local name space / defsort only*)
consts: Consts.T * Consts.T, (*local/global consts -- local name space / abbrevs only*)
facts: Facts.T, (*local facts*)
cases: (string * (Rule_Cases.T * bool)) list}; (*named case contexts*)
fun make_data (mode, syntax, tsig, consts, facts, cases) =
Data {mode = mode, syntax = syntax, tsig = tsig, consts = consts, facts = facts, cases = cases};
structure Data = Proof_Data
(
type T = data;
fun init thy =
make_data (mode_default, Local_Syntax.init thy,
(Sign.tsig_of thy, Sign.tsig_of thy),
(Sign.consts_of thy, Sign.consts_of thy), Facts.empty, []);
);
fun rep_data ctxt = Data.get ctxt |> (fn Data rep => rep);
fun map_data f =
Data.map (fn Data {mode, syntax, tsig, consts, facts, cases} =>
make_data (f (mode, syntax, tsig, consts, facts, cases)));
fun set_mode mode = map_data (fn (_, syntax, tsig, consts, facts, cases) =>
(mode, syntax, tsig, consts, facts, cases));
fun map_mode f =
map_data (fn (Mode {stmt, pattern, schematic, abbrev}, syntax, tsig, consts, facts, cases) =>
(make_mode (f (stmt, pattern, schematic, abbrev)), syntax, tsig, consts, facts, cases));
fun map_syntax f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, f syntax, tsig, consts, facts, cases));
fun map_tsig f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, syntax, f tsig, consts, facts, cases));
fun map_consts f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, syntax, tsig, f consts, facts, cases));
fun map_facts f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, syntax, tsig, consts, f facts, cases));
fun map_cases f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, syntax, tsig, consts, facts, f cases));
val get_mode = #mode o rep_data;
val restore_mode = set_mode o get_mode;
val abbrev_mode = get_mode #> (fn Mode {abbrev, ...} => abbrev);
fun set_stmt stmt =
map_mode (fn (_, pattern, schematic, abbrev) => (stmt, pattern, schematic, abbrev));
val syntax_of = #syntax o rep_data;
val syn_of = Local_Syntax.syn_of o syntax_of;
val set_syntax_mode = map_syntax o Local_Syntax.set_mode;
val restore_syntax_mode = map_syntax o Local_Syntax.restore_mode o syntax_of;
val tsig_of = #1 o #tsig o rep_data;
val set_defsort = map_tsig o apfst o Type.set_defsort;
fun default_sort ctxt = the_default (Type.defaultS (tsig_of ctxt)) o Variable.def_sort ctxt;
val consts_of = #1 o #consts o rep_data;
val facts_of = #facts o rep_data;
val cases_of = #cases o rep_data;
(* naming *)
val naming_of = Name_Space.naming_of o Context.Proof;
val map_naming = Context.proof_map o Name_Space.map_naming;
val restore_naming = map_naming o K o naming_of;
val full_name = Name_Space.full_name o naming_of;
(* name spaces *)
val class_space = Type.class_space o tsig_of;
val type_space = Type.type_space o tsig_of;
val const_space = Consts.space_of o consts_of;
val intern_class = Name_Space.intern o class_space;
val intern_type = Name_Space.intern o type_space;
val intern_const = Name_Space.intern o const_space;
fun extern_class ctxt = Name_Space.extern ctxt (class_space ctxt);
fun extern_type ctxt = Name_Space.extern ctxt (type_space ctxt);
fun extern_const ctxt = Name_Space.extern ctxt (const_space ctxt);
(* theory transfer *)
fun transfer_syntax thy ctxt = ctxt |>
map_syntax (Local_Syntax.rebuild thy) |>
map_tsig (fn tsig as (local_tsig, global_tsig) =>
let val thy_tsig = Sign.tsig_of thy in
if Type.eq_tsig (thy_tsig, global_tsig) then tsig
else (Type.merge_tsig (Context.pretty ctxt) (local_tsig, thy_tsig), thy_tsig)
end) |>
map_consts (fn consts as (local_consts, global_consts) =>
let val thy_consts = Sign.consts_of thy in
if Consts.eq_consts (thy_consts, global_consts) then consts
else (Consts.merge (local_consts, thy_consts), thy_consts)
end);
fun transfer thy = Context.raw_transfer thy #> transfer_syntax thy;
fun background_theory f ctxt = transfer (f (theory_of ctxt)) ctxt;
fun background_theory_result f ctxt =
let val (res, thy') = f (theory_of ctxt)
in (res, ctxt |> transfer thy') end;
(** pretty printing **)
(* extern *)
fun which_facts ctxt name =
let
val local_facts = facts_of ctxt;
val global_facts = Global_Theory.facts_of (theory_of ctxt);
in
if is_some (Facts.lookup (Context.Proof ctxt) local_facts name)
then local_facts else global_facts
end;
fun markup_fact ctxt name = Name_Space.markup (Facts.space_of (which_facts ctxt name)) name;
fun extern_fact ctxt name = Facts.extern ctxt (which_facts ctxt name) name;
(* pretty *)
fun pretty_term_abbrev ctxt = Syntax.pretty_term (set_mode mode_abbrev ctxt);
fun pretty_fact_name ctxt a =
Pretty.block [Pretty.mark_str (markup_fact ctxt a, extern_fact ctxt a), Pretty.str ":"];
fun pretty_fact ctxt =
let
val pretty_thm = Display.pretty_thm ctxt;
val pretty_thms = map (Display.pretty_thm_item ctxt);
in
fn ("", [th]) => pretty_thm th
| ("", ths) => Pretty.blk (0, Pretty.fbreaks (pretty_thms ths))
| (a, [th]) => Pretty.block [pretty_fact_name ctxt a, Pretty.brk 1, pretty_thm th]
| (a, ths) => Pretty.block (Pretty.fbreaks (pretty_fact_name ctxt a :: pretty_thms ths))
end;
(** prepare types **)
(* classes *)
fun read_class ctxt text =
let
val tsig = tsig_of ctxt;
val (syms, pos) = Syntax.read_token text;
val c = Type.cert_class tsig (Type.intern_class tsig (Symbol_Pos.content syms))
handle TYPE (msg, _, _) => error (msg ^ Position.here pos);
val _ = Context_Position.report ctxt pos (Name_Space.markup (Type.class_space tsig) c);
in c end;
(* types *)
fun read_typ_mode mode ctxt s =
Syntax.read_typ (Type.set_mode mode ctxt) s;
val read_typ = read_typ_mode Type.mode_default;
val read_typ_syntax = read_typ_mode Type.mode_syntax;
val read_typ_abbrev = read_typ_mode Type.mode_abbrev;
fun cert_typ_mode mode ctxt T =
Type.cert_typ_mode mode (tsig_of ctxt) T
handle TYPE (msg, _, _) => error msg;
val cert_typ = cert_typ_mode Type.mode_default;
val cert_typ_syntax = cert_typ_mode Type.mode_syntax;
val cert_typ_abbrev = cert_typ_mode Type.mode_abbrev;
(** prepare variables **)
(* check Skolem constants *)
fun no_skolem internal x =
if can Name.dest_skolem x then
error ("Illegal reference to internal Skolem constant: " ^ quote x)
else if not internal andalso can Name.dest_internal x then
error ("Illegal reference to internal variable: " ^ quote x)
else x;
(** prepare terms and propositions **)
(* inferred types of parameters *)
fun infer_type ctxt x =
Term.fastype_of (singleton (Syntax.check_terms (set_mode mode_schematic ctxt)) (Free x));
fun inferred_param x ctxt =
let val T = infer_type ctxt (x, dummyT)
in (T, ctxt |> Variable.declare_term (Free (x, T))) end;
fun inferred_fixes ctxt =
let
val xs = map #2 (Variable.dest_fixes ctxt);
val (Ts, ctxt') = fold_map inferred_param xs ctxt;
in (xs ~~ Ts, ctxt') end;
(* type and constant names *)
local
val token_content = Syntax.read_token #>> Symbol_Pos.content;
fun prep_const_proper ctxt strict (c, pos) =
let
fun err msg = error (msg ^ Position.here pos);
val consts = consts_of ctxt;
val t as Const (d, _) =
(case Variable.lookup_const ctxt c of
SOME d =>
Const (d, Consts.type_scheme (consts_of ctxt) d handle TYPE (msg, _, _) => err msg)
| NONE => Consts.read_const consts (c, pos));
val _ =
if strict then ignore (Consts.the_const consts d) handle TYPE (msg, _, _) => err msg
else ();
val _ = Context_Position.report ctxt pos (Name_Space.markup (Consts.space_of consts) d);
in t end;
in
fun read_type_name ctxt strict text =
let
val tsig = tsig_of ctxt;
val (c, pos) = token_content text;
in
if Lexicon.is_tid c then
(Context_Position.report ctxt pos Markup.tfree;
TFree (c, default_sort ctxt (c, ~1)))
else
let
val d = intern_type ctxt c;
val decl = Type.the_decl tsig (d, pos);
fun err () = error ("Bad type name: " ^ quote d ^ Position.here pos);
val args =
(case decl of
Type.LogicalType n => n
| Type.Abbreviation (vs, _, _) => if strict then err () else length vs
| Type.Nonterminal => if strict then err () else 0);
val _ = Context_Position.report ctxt pos (Name_Space.markup (Type.type_space tsig) d);
in Type (d, replicate args dummyT) end
end;
fun read_type_name_proper ctxt strict text =
(case read_type_name ctxt strict text of
T as Type _ => T
| T => error ("Not a type constructor: " ^ Syntax.string_of_typ ctxt T));
fun read_const_proper ctxt strict = prep_const_proper ctxt strict o token_content;
fun read_const ctxt strict ty text =
let
val (c, pos) = token_content text;
val _ = no_skolem false c;
in
(case (Variable.lookup_fixed ctxt c, Variable.is_const ctxt c) of
(SOME x, false) =>
(Context_Position.report ctxt pos
(Markup.name x (if can Name.dest_skolem x then Markup.skolem else Markup.free));
Free (x, infer_type ctxt (x, ty)))
| _ => prep_const_proper ctxt strict (c, pos))
end;
end;
(* type arities *)
local
fun prep_arity prep_tycon prep_sort ctxt (t, Ss, S) =
let val arity = (prep_tycon ctxt t, map (prep_sort ctxt) Ss, prep_sort ctxt S)
in Type.add_arity (Context.pretty ctxt) arity (tsig_of ctxt); arity end;
in
val read_arity =
prep_arity (fn ctxt => #1 o dest_Type o read_type_name_proper ctxt true) Syntax.read_sort;
val cert_arity = prep_arity (K I) (Type.cert_sort o tsig_of);
end;
(* skolem variables *)
fun intern_skolem ctxt x =
let
val _ = no_skolem false x;
val sko = Variable.lookup_fixed ctxt x;
val is_const = can (read_const_proper ctxt false) x orelse Long_Name.is_qualified x;
val is_declared = is_some (Variable.def_type ctxt false (x, ~1));
in
if Variable.is_const ctxt x then NONE
else if is_some sko then sko
else if not is_const orelse is_declared then SOME x
else NONE
end;
(* read_term *)
fun read_term_mode mode ctxt = Syntax.read_term (set_mode mode ctxt);
val read_term_pattern = read_term_mode mode_pattern;
val read_term_schematic = read_term_mode mode_schematic;
val read_term_abbrev = read_term_mode mode_abbrev;
(* local abbreviations *)
local
fun certify_consts ctxt = Consts.certify (Context.pretty ctxt) (tsig_of ctxt)
(not (abbrev_mode ctxt)) (consts_of ctxt);
fun expand_binds ctxt =
let
val Mode {pattern, schematic, ...} = get_mode ctxt;
fun reject_schematic (t as Var _) =
error ("Unbound schematic variable: " ^ Syntax.string_of_term ctxt t)
| reject_schematic (Abs (_, _, t)) = reject_schematic t
| reject_schematic (t $ u) = (reject_schematic t; reject_schematic u)
| reject_schematic _ = ();
in
if pattern then I
else Variable.expand_binds ctxt #> (if schematic then I else tap reject_schematic)
end;
in
fun expand_abbrevs ctxt = certify_consts ctxt #> expand_binds ctxt;
end;
val show_abbrevs_raw = Config.declare "show_abbrevs" (fn _ => Config.Bool true);
val show_abbrevs = Config.bool show_abbrevs_raw;
fun contract_abbrevs ctxt t =
let
val thy = theory_of ctxt;
val consts = consts_of ctxt;
val Mode {abbrev, ...} = get_mode ctxt;
val retrieve = Consts.retrieve_abbrevs consts (print_mode_value () @ [""]);
fun match_abbrev u = Option.map #1 (get_first (Pattern.match_rew thy u) (retrieve u));
in
if abbrev orelse not (Config.get ctxt show_abbrevs) orelse not (can Term.type_of t) then t
else Pattern.rewrite_term_top thy [] [match_abbrev] t
end;
(* patterns *)
fun prepare_patternT ctxt T =
let
val Mode {pattern, schematic, ...} = get_mode ctxt;
val _ =
pattern orelse schematic orelse
T |> Term.exists_subtype
(fn T as TVar (xi, _) =>
not (Type_Infer.is_param xi) andalso
error ("Illegal schematic type variable: " ^ Syntax.string_of_typ ctxt T)
| _ => false)
in T end;
local
val dummies = Config.bool (Config.declare "Proof_Context.dummies" (K (Config.Bool false)));
fun check_dummies ctxt t =
if Config.get ctxt dummies then t
else Term.no_dummy_patterns t handle TERM _ => error "Illegal dummy pattern(s) in term";
fun prepare_dummies ts = #1 (fold_map Term.replace_dummy_patterns ts 1);
in
val allow_dummies = Config.put dummies true;
fun prepare_patterns ctxt =
let val Mode {pattern, ...} = get_mode ctxt in
Type_Infer.fixate ctxt #>
pattern ? Variable.polymorphic ctxt #>
(map o Term.map_types) (prepare_patternT ctxt) #>
(if pattern then prepare_dummies else map (check_dummies ctxt))
end;
end;
(* sort constraints *)
local
fun prepare_sorts_env ctxt tys =
let
val tsig = tsig_of ctxt;
val defaultS = Type.defaultS tsig;
fun constraint (xi, raw_S) env =
let val (ps, S) = Term_Position.decode_positionS raw_S in
if S = dummyS then env
else
Vartab.insert (op =) (xi, Type.minimize_sort tsig S) env
handle Vartab.DUP _ =>
error ("Inconsistent sort constraints for type variable " ^
quote (Term.string_of_vname' xi) ^ Position.here_list ps)
end;
val env =
(fold o fold_atyps)
(fn TFree (x, S) => constraint ((x, ~1), S)
| TVar v => constraint v
| _ => I) tys Vartab.empty;
fun get_sort xi =
(case (Vartab.lookup env xi, Variable.def_sort ctxt xi) of
(NONE, NONE) => defaultS
| (NONE, SOME S) => S
| (SOME S, NONE) => S
| (SOME S, SOME S') =>
if Type.eq_sort tsig (S, S') then S'
else
error ("Sort constraint " ^ Syntax.string_of_sort ctxt S ^
" inconsistent with default " ^ Syntax.string_of_sort ctxt S' ^
" for type variable " ^ quote (Term.string_of_vname' xi)));
fun add_report S pos reports =
if Position.is_reported pos andalso not (AList.defined (op =) reports pos) then
(pos, Position.reported_text pos Markup.sorting (Syntax.string_of_sort ctxt S)) :: reports
else reports;
fun get_sort_reports xi raw_S =
let
val ps = #1 (Term_Position.decode_positionS raw_S);
val S = get_sort xi handle ERROR msg => error (msg ^ Position.here_list ps);
in fold (add_report S) ps end;
val reports =
(fold o fold_atyps)
(fn T =>
if Term_Position.is_positionT T then I
else
(case T of
TFree (x, raw_S) => get_sort_reports (x, ~1) raw_S
| TVar (xi, raw_S) => get_sort_reports xi raw_S
| _ => I)) tys [];
in (implode (map #2 reports), get_sort) end;
fun replace_sortsT get_sort =
map_atyps
(fn T =>
if Term_Position.is_positionT T then T
else
(case T of
TFree (x, _) => TFree (x, get_sort (x, ~1))
| TVar (xi, _) => TVar (xi, get_sort xi)
| _ => T));
in
fun prepare_sortsT ctxt tys =
let val (sorting_report, get_sort) = prepare_sorts_env ctxt tys
in (sorting_report, map (replace_sortsT get_sort) tys) end;
fun prepare_sorts ctxt tms =
let
val tys = rev ((fold o fold_types) cons tms []);
val (sorting_report, get_sort) = prepare_sorts_env ctxt tys;
in (sorting_report, (map o map_types) (replace_sortsT get_sort) tms) end;
fun check_tfree ctxt v =
let
val (sorting_report, [TFree a]) = prepare_sortsT ctxt [TFree v];
val _ = Context_Position.if_visible ctxt Output.report sorting_report;
in a end;
end;
(* certify terms *)
local
fun gen_cert prop ctxt t =
t
|> expand_abbrevs ctxt
|> (fn t' =>
#1 (Sign.certify' prop (Context.pretty ctxt) false (consts_of ctxt) (theory_of ctxt) t')
handle TYPE (msg, _, _) => error msg | TERM (msg, _) => error msg);
in
val cert_term = gen_cert false;
val cert_prop = gen_cert true;
end;
(* check/uncheck *)
fun def_type ctxt =
let val Mode {pattern, ...} = get_mode ctxt
in Variable.def_type ctxt pattern end;
fun standard_typ_check ctxt =
map (cert_typ_mode (Type.get_mode ctxt) ctxt #> prepare_patternT ctxt);
val standard_term_check_finish = prepare_patterns;
fun standard_term_uncheck ctxt = map (contract_abbrevs ctxt);
(** export results **)
fun common_export is_goal inner outer =
map (Assumption.export is_goal inner outer) #>
Variable.export inner outer;
val goal_export = common_export true;
val export = common_export false;
fun export_morphism inner outer =
Assumption.export_morphism inner outer $>
Variable.export_morphism inner outer;
fun norm_export_morphism inner outer =
export_morphism inner outer $>
Morphism.thm_morphism Goal.norm_result;
(** term bindings **)
(* simult_matches *)
fun simult_matches ctxt (t, pats) =
(case Seq.pull (Unify.matchers (theory_of ctxt) (map (rpair t) pats)) of
NONE => error "Pattern match failed!"
| SOME (env, _) => Vartab.fold (fn (v, (_, t)) => cons (v, t)) (Envir.term_env env) []);
(* bind_terms *)
val bind_terms = fold (fn (xi, t) => fn ctxt =>
ctxt
|> Variable.bind_term (xi, Option.map (cert_term (set_mode mode_default ctxt)) t));
(* auto_bind *)
fun drop_schematic (b as (xi, SOME t)) = if Term.exists_subterm is_Var t then (xi, NONE) else b
| drop_schematic b = b;
fun auto_bind f ts ctxt = ctxt |> bind_terms (map drop_schematic (f (theory_of ctxt) ts));
val auto_bind_goal = auto_bind Auto_Bind.goal;
val auto_bind_facts = auto_bind Auto_Bind.facts;
(* match_bind(_i) *)
local
fun gen_bind prep_terms gen raw_binds ctxt =
let
fun prep_bind (raw_pats, t) ctxt1 =
let
val T = Term.fastype_of t;
val ctxt2 = Variable.declare_term t ctxt1;
val pats = prep_terms (set_mode mode_pattern ctxt2) T raw_pats;
val binds = simult_matches ctxt2 (t, pats);
in (binds, ctxt2) end;
val ts = prep_terms ctxt dummyT (map snd raw_binds);
val (binds, ctxt') = apfst flat (fold_map prep_bind (map fst raw_binds ~~ ts) ctxt);
val binds' =
if gen then map #1 binds ~~ Variable.exportT_terms ctxt' ctxt (map #2 binds)
else binds;
val binds'' = map (apsnd SOME) binds';
val ctxt'' =
tap (Variable.warn_extra_tfrees ctxt)
(if gen then
ctxt (*sic!*) |> fold Variable.declare_term (map #2 binds') |> bind_terms binds''
else ctxt' |> bind_terms binds'');
in (ts, ctxt'') end;
in
fun read_terms ctxt T =
map (Syntax.parse_term ctxt #> Type.constraint T) #> Syntax.check_terms ctxt;
val match_bind = gen_bind read_terms;
val match_bind_i = gen_bind (fn ctxt => fn _ => map (cert_term ctxt));
end;
(* propositions with patterns *)
local
fun prep_propp mode prep_props args context =
let
fun prep (_, raw_pats) (ctxt, prop :: props) =
let val ctxt' = Variable.declare_term prop ctxt
in ((prop, prep_props (set_mode mode_pattern ctxt') raw_pats), (ctxt', props)) end;
val (propp, (context', _)) =
(fold_map o fold_map) prep args
(context, prep_props (set_mode mode context) (maps (map fst) args));
in (propp, context') end;
fun gen_bind_propp mode parse_prop raw_args ctxt =
let
val (args, ctxt') = prep_propp mode parse_prop raw_args ctxt;
val binds = flat (flat (map (map (simult_matches ctxt')) args));
val propss = map (map #1) args;
fun gen_binds ctxt0 = ctxt0
|> bind_terms (map #1 binds ~~
map (SOME o Term.close_schematic_term) (Variable.export_terms ctxt' ctxt0 (map #2 binds)));
in ((propss, gen_binds), ctxt' |> bind_terms (map (apsnd SOME) binds)) end;
in
val read_propp = prep_propp mode_default Syntax.read_props;
val cert_propp = prep_propp mode_default (map o cert_prop);
val read_propp_schematic = prep_propp mode_schematic Syntax.read_props;
val cert_propp_schematic = prep_propp mode_schematic (map o cert_prop);
val bind_propp = gen_bind_propp mode_default Syntax.read_props;
val bind_propp_i = gen_bind_propp mode_default (map o cert_prop);
val bind_propp_schematic = gen_bind_propp mode_schematic Syntax.read_props;
val bind_propp_schematic_i = gen_bind_propp mode_schematic (map o cert_prop);
end;
(** theorems **)
(* fact_tac *)
local
fun comp_hhf_tac th i st =
PRIMSEQ (Thm.bicompose {flatten = true, match = false, incremented = true}
(false, Drule.lift_all (Thm.cprem_of st i) th, 0) i) st;
fun comp_incr_tac [] _ = no_tac
| comp_incr_tac (th :: ths) i =
(fn st => comp_hhf_tac (Drule.incr_indexes st th) i st) APPEND comp_incr_tac ths i;
in
fun fact_tac facts = Goal.norm_hhf_tac THEN' comp_incr_tac facts;
fun potential_facts ctxt prop =
Facts.could_unify (facts_of ctxt) (Term.strip_all_body prop);
fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) => fact_tac (potential_facts ctxt goal) i);
end;
(* get_thm(s) *)
local
fun retrieve_thms pick ctxt (Facts.Fact s) =
let
val pos = Syntax.read_token_pos s;
val prop =
Syntax.read_prop (ctxt |> set_mode mode_default |> allow_dummies) s
|> singleton (Variable.polymorphic ctxt);
fun err msg = error (msg ^ Position.here pos ^ ":\n" ^ Syntax.string_of_term ctxt prop);
val (prop', _) = Term.replace_dummy_patterns prop (Variable.maxidx_of ctxt + 1);
fun prove_fact th =
Goal.prove ctxt [] [] prop' (K (ALLGOALS (fact_tac [th])));
val results = map_filter (try prove_fact) (potential_facts ctxt prop');
val res =
(case distinct Thm.eq_thm_prop results of
[res] => res
| [] => err "Failed to retrieve literal fact"
| _ => err "Ambiguous specification of literal fact");
in pick "" [res] end
| retrieve_thms pick ctxt xthmref =
let
val thy = theory_of ctxt;
val local_facts = facts_of ctxt;
val thmref = Facts.map_name_of_ref (Facts.intern local_facts) xthmref;
val name = Facts.name_of_ref thmref;
val pos = Facts.pos_of_ref xthmref;
val thms =
if name = "" then [Thm.transfer thy Drule.dummy_thm]
else
(case Facts.lookup (Context.Proof ctxt) local_facts name of
SOME (_, ths) =>
(Context_Position.report ctxt pos
(Name_Space.markup (Facts.space_of local_facts) name);
map (Thm.transfer thy) (Facts.select thmref ths))
| NONE => Global_Theory.get_fact (Context.Proof ctxt) thy xthmref);
in pick name thms end;
in
val get_fact = retrieve_thms (K I);
val get_fact_single = retrieve_thms Facts.the_single;
fun get_thms ctxt = get_fact ctxt o Facts.named;
fun get_thm ctxt = get_fact_single ctxt o Facts.named;
end;
(* facts *)
local
fun update_thms _ (b, NONE) ctxt = ctxt |> map_facts (Facts.del (full_name ctxt b))
| update_thms flags (b, SOME ths) ctxt = ctxt |> map_facts
(Facts.add_static (Context.Proof ctxt) flags (b, ths) #> snd);
in
fun note_thmss kind = fold_map (fn ((b, more_atts), raw_facts) => fn ctxt =>
let
val name = full_name ctxt b;
val facts = Global_Theory.name_thmss false name raw_facts;
fun app (ths, atts) =
fold_map (Thm.proof_attributes (surround (Thm.kind kind) (atts @ more_atts))) ths;
val (res, ctxt') = fold_map app facts ctxt;
val thms = Global_Theory.name_thms false false name (flat res);
val Mode {stmt, ...} = get_mode ctxt;
in ((name, thms), ctxt' |> update_thms {strict = false, index = stmt} (b, SOME thms)) end);
fun put_thms index thms ctxt = ctxt
|> map_naming (K Name_Space.local_naming)
|> Context_Position.set_visible false
|> update_thms {strict = false, index = index} (apfst Binding.name thms)
|> Context_Position.restore_visible ctxt
|> restore_naming ctxt;
end;
(** basic logical entities **)
(* variables *)
fun declare_var (x, opt_T, mx) ctxt =
let val T = (case opt_T of SOME T => T | NONE => Mixfix.mixfixT mx)
in ((x, T, mx), ctxt |> Variable.declare_constraints (Free (x, T))) end;
local
fun prep_vars prep_typ internal =
fold_map (fn (b, raw_T, mx) => fn ctxt =>
let
val x = Variable.check_name b;
val _ = Symbol_Pos.is_identifier (no_skolem internal x) orelse
error ("Illegal variable name: " ^ Binding.print b);
fun cond_tvars T =
if internal then T
else Type.no_tvars T handle TYPE (msg, _, _) => error msg;
val opt_T = Option.map (cond_tvars o cert_typ ctxt o prep_typ ctxt) raw_T;
val (_, ctxt') = ctxt |> declare_var (x, opt_T, mx);
in ((b, opt_T, mx), ctxt') end);
in
val read_vars = prep_vars Syntax.read_typ false;
val cert_vars = prep_vars (K I) true;
end;
(* notation *)
local
fun type_syntax (Type (c, args), mx) =
SOME (Local_Syntax.Type, (Lexicon.mark_type c, Mixfix.make_type (length args), mx))
| type_syntax _ = NONE;
fun const_syntax _ (Free (x, T), mx) = SOME (Local_Syntax.Fixed, (x, T, mx))
| const_syntax ctxt (Const (c, _), mx) =
(case try (Consts.type_scheme (consts_of ctxt)) c of
SOME T => SOME (Local_Syntax.Const, (Lexicon.mark_const c, T, mx))
| NONE => NONE)
| const_syntax _ _ = NONE;
fun gen_notation syntax add mode args ctxt =
ctxt |> map_syntax
(Local_Syntax.update_modesyntax (theory_of ctxt) add mode (map_filter (syntax ctxt) args));
in
val type_notation = gen_notation (K type_syntax);
val notation = gen_notation const_syntax;
fun generic_type_notation add mode args phi =
let
val args' = args |> map_filter (fn (T, mx) =>
let
val T' = Morphism.typ phi T;
val similar = (case (T, T') of (Type (c, _), Type (c', _)) => c = c' | _ => false);
in if similar then SOME (T', mx) else NONE end);
in Context.mapping (Sign.type_notation add mode args') (type_notation add mode args') end;
fun generic_notation add mode args phi =
let
val args' = args |> map_filter (fn (t, mx) =>
let val t' = Morphism.term phi t
in if Term.aconv_untyped (t, t') then SOME (t', mx) else NONE end);
in Context.mapping (Sign.notation add mode args') (notation add mode args') end;
end;
(* aliases *)
fun class_alias b c ctxt = (map_tsig o apfst) (Type.class_alias (naming_of ctxt) b c) ctxt;
fun type_alias b c ctxt = (map_tsig o apfst) (Type.type_alias (naming_of ctxt) b c) ctxt;
fun const_alias b c ctxt = (map_consts o apfst) (Consts.alias (naming_of ctxt) b c) ctxt;
(* local constants *)
fun add_const_constraint (c, opt_T) ctxt =
let
fun prepT raw_T =
let val T = cert_typ ctxt raw_T
in cert_term ctxt (Const (c, T)); T end;
in ctxt |> (map_consts o apfst) (Consts.constrain (c, Option.map prepT opt_T)) end;
fun add_abbrev mode (b, raw_t) ctxt =
let
val t0 = cert_term (ctxt |> set_mode mode_abbrev) raw_t
handle ERROR msg => cat_error msg ("in constant abbreviation " ^ Binding.print b);
val [t] = Variable.exportT_terms (Variable.declare_term t0 ctxt) ctxt [t0];
val ((lhs, rhs), consts') = consts_of ctxt
|> Consts.abbreviate (Context.Proof ctxt) (tsig_of ctxt) mode (b, t);
in
ctxt
|> (map_consts o apfst) (K consts')
|> Variable.declare_term rhs
|> pair (lhs, rhs)
end;
fun revert_abbrev mode c = (map_consts o apfst) (Consts.revert_abbrev mode c);
fun generic_add_abbrev mode arg =
Context.mapping_result (Sign.add_abbrev mode arg) (add_abbrev mode arg);
fun generic_revert_abbrev mode arg =
Context.mapping (Sign.revert_abbrev mode arg) (revert_abbrev mode arg);
(* fixes *)
fun add_fixes raw_vars ctxt =
let
val thy = theory_of ctxt;
val vars = #1 (cert_vars raw_vars ctxt);
in
ctxt
|> Variable.add_fixes_binding (map #1 vars)
|-> (fn xs =>
fold_map declare_var (map2 (fn x => fn (_, T, mx) => (x, T, mx)) xs vars)
#-> (map_syntax o Local_Syntax.add_syntax thy o map (pair Local_Syntax.Fixed))
#> pair xs)
end;
(** assumptions **)
local
fun gen_assms prepp exp args ctxt =
let
val cert = Thm.cterm_of (theory_of ctxt);
val ((propss, _), ctxt1) = prepp (map snd args) ctxt;
val _ = Variable.warn_extra_tfrees ctxt ctxt1;
val (premss, ctxt2) = fold_burrow (Assumption.add_assms exp o map cert) propss ctxt1;
in
ctxt2
|> auto_bind_facts (flat propss)
|> note_thmss "" (map fst args ~~ map (map (fn th => ([th], []))) premss)
end;
in
val add_assms = gen_assms bind_propp;
val add_assms_i = gen_assms bind_propp_i;
end;
(** cases **)
local
fun rem_case name = remove (fn (x: string, (y, _)) => x = y) name;
fun add_case _ ("", _) cases = cases
| add_case _ (name, NONE) cases = rem_case name cases
| add_case is_proper (name, SOME c) cases = (name, (c, is_proper)) :: rem_case name cases;
fun prep_case name fxs c =
let
fun replace (opt_x :: xs) ((y, T) :: ys) = (the_default y opt_x, T) :: replace xs ys
| replace [] ys = ys
| replace (_ :: _) [] = error ("Too many parameters for case " ^ quote name);
val Rule_Cases.Case {fixes, assumes, binds, cases} = c;
val fixes' = replace fxs fixes;
val binds' = map drop_schematic binds;
in
if null (fold (Term.add_tvarsT o snd) fixes []) andalso
null (fold (fold Term.add_vars o snd) assumes []) then
Rule_Cases.Case {fixes = fixes', assumes = assumes, binds = binds', cases = cases}
else error ("Illegal schematic variable(s) in case " ^ quote name)
end;
fun fix (b, T) ctxt =
let val ([x], ctxt') = add_fixes [(b, SOME T, NoSyn)] ctxt
in (Free (x, T), ctxt') end;
in
fun add_cases is_proper = map_cases o fold (add_case is_proper);
fun case_result c ctxt =
let
val Rule_Cases.Case {fixes, ...} = c;
val (ts, ctxt') = ctxt |> fold_map fix fixes;
val Rule_Cases.Case {assumes, binds, cases, ...} = Rule_Cases.apply ts c;
in
ctxt'
|> bind_terms (map drop_schematic binds)
|> add_cases true (map (apsnd SOME) cases)
|> pair (assumes, (binds, cases))
end;
val apply_case = apfst fst oo case_result;
fun get_case ctxt name xs =
(case AList.lookup (op =) (cases_of ctxt) name of
NONE => error ("Unknown case: " ^ quote name)
| SOME (c, _) => prep_case name xs c);
end;
(** print context information **)
(* local syntax *)
val print_syntax = Syntax.print_syntax o syn_of;
(* abbreviations *)
fun pretty_abbrevs show_globals ctxt =
let
val ((space, consts), (_, globals)) =
pairself (#constants o Consts.dest) (#consts (rep_data ctxt));
fun add_abbr (_, (_, NONE)) = I
| add_abbr (c, (T, SOME t)) =
if not show_globals andalso Symtab.defined globals c then I
else cons (c, Logic.mk_equals (Const (c, T), t));
val abbrevs =
Name_Space.extern_table ctxt (space, Symtab.make (Symtab.fold add_abbr consts []));
in
if null abbrevs then []
else [Pretty.big_list "abbreviations:" (map (pretty_term_abbrev ctxt o #2) abbrevs)]
end;
val print_abbrevs = Pretty.writeln o Pretty.chunks o pretty_abbrevs true;
(* term bindings *)
fun pretty_binds ctxt =
let
val binds = Variable.binds_of ctxt;
fun prt_bind (xi, (T, t)) = pretty_term_abbrev ctxt (Logic.mk_equals (Var (xi, T), t));
in
if Vartab.is_empty binds then []
else [Pretty.big_list "term bindings:" (map prt_bind (Vartab.dest binds))]
end;
val print_binds = Pretty.writeln o Pretty.chunks o pretty_binds;
(* local theorems *)
fun pretty_lthms ctxt =
let
val local_facts = facts_of ctxt;
val props = Facts.props local_facts;
val facts =
(if null props then [] else [("<unnamed>", props)]) @
Facts.dest_static [] local_facts;
in
if null facts then []
else [Pretty.big_list "facts:" (map #1 (sort_wrt (#1 o #2) (map (`(pretty_fact ctxt)) facts)))]
end;
val print_lthms = Pretty.writeln o Pretty.chunks o pretty_lthms;
(* local contexts *)
local
fun pretty_case (name, (fixes, ((asms, (lets, cs)), ctxt))) =
let
val prt_term = Syntax.pretty_term ctxt;
fun prt_let (xi, t) = Pretty.block
[Pretty.quote (prt_term (Var (xi, Term.fastype_of t))), Pretty.str " =", Pretty.brk 1,
Pretty.quote (prt_term t)];
fun prt_asm (a, ts) = Pretty.block (Pretty.breaks
((if a = "" then [] else [Pretty.str (a ^ ":")]) @ map (Pretty.quote o prt_term) ts));
fun prt_sect _ _ _ [] = []
| prt_sect s sep prt xs =
[Pretty.block (Pretty.breaks (Pretty.str s ::
flat (separate sep (map (single o prt) xs))))];
in
Pretty.block (Pretty.fbreaks
(Pretty.str (name ^ ":") ::
prt_sect "fix" [] (Pretty.str o Binding.name_of o fst) fixes @
prt_sect "let" [Pretty.str "and"] prt_let
(map_filter (fn (xi, SOME t) => SOME (xi, t) | _ => NONE) lets) @
(if forall (null o #2) asms then []
else prt_sect "assume" [Pretty.str "and"] prt_asm asms) @
prt_sect "subcases:" [] (Pretty.str o fst) cs))
end;
in
fun pretty_cases ctxt =
let
fun add_case (_, (_, false)) = I
| add_case (name, (c as Rule_Cases.Case {fixes, ...}, true)) =
cons (name, (fixes, case_result c ctxt));
val cases = fold add_case (cases_of ctxt) [];
in
if null cases then []
else [Pretty.big_list "cases:" (map pretty_case cases)]
end;
val print_cases = Pretty.writeln o Pretty.chunks o pretty_cases;
end;
(* core context *)
val debug = Config.bool (Config.declare "Proof_Context.debug" (K (Config.Bool false)));
val verbose = Config.bool (Config.declare "Proof_Context.verbose" (K (Config.Bool false)));
fun pretty_ctxt ctxt =
if not (Config.get ctxt debug) then []
else
let
val prt_term = Syntax.pretty_term ctxt;
(*structures*)
val {structs, ...} = Local_Syntax.idents_of (syntax_of ctxt);
val prt_structs =
if null structs then []
else [Pretty.block (Pretty.str "structures:" :: Pretty.brk 1 ::
Pretty.commas (map Pretty.str structs))];
(*fixes*)
fun prt_fix (x, x') =
if x = x' then Pretty.str x
else Pretty.block [Pretty.str x, Pretty.str " =", Pretty.brk 1, prt_term (Syntax.free x')];
val fixes =
filter_out ((can Name.dest_internal orf member (op =) structs) o #1)
(Variable.dest_fixes ctxt);
val prt_fixes =
if null fixes then []
else [Pretty.block (Pretty.str "fixed variables:" :: Pretty.brk 1 ::
Pretty.commas (map prt_fix fixes))];
(*prems*)
val prt_prems =
(case Assumption.all_prems_of ctxt of
[] => []
| prems => [Pretty.big_list "prems:" [pretty_fact ctxt ("", prems)]]);
in prt_structs @ prt_fixes @ prt_prems end;
(* main context *)
fun pretty_context ctxt =
let
val verbose = Config.get ctxt verbose;
fun verb f x = if verbose then f (x ()) else [];
val prt_term = Syntax.pretty_term ctxt;
val prt_typ = Syntax.pretty_typ ctxt;
val prt_sort = Syntax.pretty_sort ctxt;
(*theory*)
val pretty_thy = Pretty.block
[Pretty.str "theory:", Pretty.brk 1, Context.pretty_thy (theory_of ctxt)];
(*defaults*)
fun prt_atom prt prtT (x, X) = Pretty.block
[prt x, Pretty.str " ::", Pretty.brk 1, prtT X];
fun prt_var (x, ~1) = prt_term (Syntax.free x)
| prt_var xi = prt_term (Syntax.var xi);
fun prt_varT (x, ~1) = prt_typ (TFree (x, []))
| prt_varT xi = prt_typ (TVar (xi, []));
val prt_defT = prt_atom prt_var prt_typ;
val prt_defS = prt_atom prt_varT prt_sort;
val (types, sorts) = Variable.constraints_of ctxt;
in
verb single (K pretty_thy) @
pretty_ctxt ctxt @
verb (pretty_abbrevs false) (K ctxt) @
verb pretty_binds (K ctxt) @
verb pretty_lthms (K ctxt) @
verb pretty_cases (K ctxt) @
verb single (fn () => Pretty.big_list "type constraints:" (map prt_defT (Vartab.dest types))) @
verb single (fn () => Pretty.big_list "default sorts:" (map prt_defS (Vartab.dest sorts)))
end;
end;
val show_abbrevs = Proof_Context.show_abbrevs;