(* Title: ZF/ind_syntax.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Abstract Syntax functions for Inductive Definitions.
*)
structure Ind_Syntax =
struct
(*Print tracing messages during processing of "inductive" theory sections*)
val trace = Unsynchronized.ref false;
fun traceIt msg thy t =
if !trace then (tracing (msg ^ Syntax.string_of_term_global thy t); t)
else t;
(** Abstract syntax definitions for ZF **)
val iT = Type("i",[]);
(*Creates All(%v.v:A --> P(v)) rather than Ball(A,P) *)
fun mk_all_imp (A,P) =
FOLogic.all_const iT $
Abs("v", iT, FOLogic.imp $ (@{const mem} $ Bound 0 $ A) $
Term.betapply(P, Bound 0));
fun mk_Collect (a, D, t) = @{const Collect} $ D $ absfree (a, iT, t);
(*simple error-checking in the premises of an inductive definition*)
fun chk_prem rec_hd (Const (@{const_name "op &"}, _) $ _ $ _) =
error"Premises may not be conjuctive"
| chk_prem rec_hd (Const (@{const_name mem}, _) $ t $ X) =
(Logic.occs(rec_hd,t) andalso error "Recursion term on left of member symbol"; ())
| chk_prem rec_hd t =
(Logic.occs(rec_hd,t) andalso error "Recursion term in side formula"; ());
(*Return the conclusion of a rule, of the form t:X*)
fun rule_concl rl =
let val Const (@{const_name Trueprop}, _) $ (Const (@{const_name mem}, _) $ t $ X) =
Logic.strip_imp_concl rl
in (t,X) end;
(*As above, but return error message if bad*)
fun rule_concl_msg sign rl = rule_concl rl
handle Bind => error ("Ill-formed conclusion of introduction rule: " ^
Syntax.string_of_term_global sign rl);
(*For deriving cases rules. CollectD2 discards the domain, which is redundant;
read_instantiate replaces a propositional variable by a formula variable*)
val equals_CollectD =
read_instantiate @{context} [(("W", 0), "?Q")]
(make_elim (@{thm equalityD1} RS @{thm subsetD} RS @{thm CollectD2}));
(** For datatype definitions **)
(*Constructor name, type, mixfix info;
internal name from mixfix, datatype sets, full premises*)
type constructor_spec =
(string * typ * mixfix) * string * term list * term list;
fun dest_mem (Const (@{const_name mem}, _) $ x $ A) = (x, A)
| dest_mem _ = error "Constructor specifications must have the form x:A";
(*read a constructor specification*)
fun read_construct ctxt (id: string, sprems, syn: mixfix) =
let val prems = map (Syntax.parse_term ctxt #> TypeInfer.constrain FOLogic.oT) sprems
|> Syntax.check_terms ctxt
val args = map (#1 o dest_mem) prems
val T = (map (#2 o dest_Free) args) ---> iT
handle TERM _ => error
"Bad variable in constructor specification"
in ((id,T,syn), id, args, prems) end;
val read_constructs = map o map o read_construct;
(*convert constructor specifications into introduction rules*)
fun mk_intr_tms sg (rec_tm, constructs) =
let
fun mk_intr ((id,T,syn), name, args, prems) =
Logic.list_implies
(map FOLogic.mk_Trueprop prems,
FOLogic.mk_Trueprop
(@{const mem} $ list_comb (Const (Sign.full_bname sg name, T), args)
$ rec_tm))
in map mk_intr constructs end;
fun mk_all_intr_tms sg arg = flat (ListPair.map (mk_intr_tms sg) arg);
fun mk_Un (t1, t2) = @{const Un} $ t1 $ t2;
(*Make a datatype's domain: form the union of its set parameters*)
fun union_params (rec_tm, cs) =
let val (_,args) = strip_comb rec_tm
fun is_ind arg = (type_of arg = iT)
in case filter is_ind (args @ cs) of
[] => @{const 0}
| u_args => Balanced_Tree.make mk_Un u_args
end;
(*Includes rules for succ and Pair since they are common constructions*)
val elim_rls =
[@{thm asm_rl}, @{thm FalseE}, @{thm succ_neq_0}, @{thm sym} RS @{thm succ_neq_0},
@{thm Pair_neq_0}, @{thm sym} RS @{thm Pair_neq_0}, @{thm Pair_inject},
make_elim @{thm succ_inject}, @{thm refl_thin}, @{thm conjE}, @{thm exE}, @{thm disjE}];
(*From HOL/ex/meson.ML: raises exception if no rules apply -- unlike RL*)
fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls))
| tryres (th, []) = raise THM("tryres", 0, [th]);
fun gen_make_elim elim_rls rl =
Drule.export_without_context (tryres (rl, elim_rls @ [revcut_rl]));
(*Turns iff rules into safe elimination rules*)
fun mk_free_SEs iffs = map (gen_make_elim [@{thm conjE}, @{thm FalseE}]) (iffs RL [@{thm iffD1}]);
end;