(* Title: HOL/Set.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1993 University of Cambridge
*)
Set = Ord +
(** Core syntax **)
global
types
'a set
arities
set :: (term) term
instance
set :: (term) {ord, minus}
syntax
"op :" :: ['a, 'a set] => bool ("op :")
consts
"{}" :: 'a set ("{}")
UNIV :: 'a set
insert :: ['a, 'a set] => 'a set
Collect :: ('a => bool) => 'a set (*comprehension*)
Int :: ['a set, 'a set] => 'a set (infixl 70)
Un :: ['a set, 'a set] => 'a set (infixl 65)
UNION, INTER :: ['a set, 'a => 'b set] => 'b set (*general*)
Union, Inter :: (('a set) set) => 'a set (*of a set*)
Pow :: 'a set => 'a set set (*powerset*)
range :: ('a => 'b) => 'b set (*of function*)
Ball, Bex :: ['a set, 'a => bool] => bool (*bounded quantifiers*)
"image" :: ['a => 'b, 'a set] => ('b set) (infixr "``" 90)
(*membership*)
"op :" :: ['a, 'a set] => bool ("(_/ : _)" [50, 51] 50)
(** Additional concrete syntax **)
syntax
(* Infix syntax for non-membership *)
"op ~:" :: ['a, 'a set] => bool ("op ~:")
"op ~:" :: ['a, 'a set] => bool ("(_/ ~: _)" [50, 51] 50)
"@Finset" :: args => 'a set ("{(_)}")
"@Coll" :: [pttrn, bool] => 'a set ("(1{_./ _})")
"@SetCompr" :: ['a, idts, bool] => 'a set ("(1{_ |/_./ _})")
(* Big Intersection / Union *)
"@INTER1" :: [pttrns, 'b set] => 'b set ("(3INT _./ _)" 10)
"@UNION1" :: [pttrns, 'b set] => 'b set ("(3UN _./ _)" 10)
"@INTER" :: [pttrn, 'a set, 'b set] => 'b set ("(3INT _:_./ _)" 10)
"@UNION" :: [pttrn, 'a set, 'b set] => 'b set ("(3UN _:_./ _)" 10)
(* Bounded Quantifiers *)
"_Ball" :: [pttrn, 'a set, bool] => bool ("(3ALL _:_./ _)" [0, 0, 10] 10)
"_Bex" :: [pttrn, 'a set, bool] => bool ("(3EX _:_./ _)" [0, 0, 10] 10)
syntax (HOL)
"_Ball" :: [pttrn, 'a set, bool] => bool ("(3! _:_./ _)" [0, 0, 10] 10)
"_Bex" :: [pttrn, 'a set, bool] => bool ("(3? _:_./ _)" [0, 0, 10] 10)
translations
"range f" == "f``UNIV"
"x ~: y" == "~ (x : y)"
"{x, xs}" == "insert x {xs}"
"{x}" == "insert x {}"
"{x. P}" == "Collect (%x. P)"
"UN x y. B" == "UN x. UN y. B"
"UN x. B" == "UNION UNIV (%x. B)"
"INT x y. B" == "INT x. INT y. B"
"INT x. B" == "INTER UNIV (%x. B)"
"UN x:A. B" == "UNION A (%x. B)"
"INT x:A. B" == "INTER A (%x. B)"
"ALL x:A. P" == "Ball A (%x. P)"
"EX x:A. P" == "Bex A (%x. P)"
syntax ("" output)
"_setle" :: ['a set, 'a set] => bool ("op <=")
"_setle" :: ['a set, 'a set] => bool ("(_/ <= _)" [50, 51] 50)
"_setless" :: ['a set, 'a set] => bool ("op <")
"_setless" :: ['a set, 'a set] => bool ("(_/ < _)" [50, 51] 50)
syntax (symbols)
"_setle" :: ['a set, 'a set] => bool ("op \\<subseteq>")
"_setle" :: ['a set, 'a set] => bool ("(_/ \\<subseteq> _)" [50, 51] 50)
"_setless" :: ['a set, 'a set] => bool ("op \\<subset>")
"_setless" :: ['a set, 'a set] => bool ("(_/ \\<subset> _)" [50, 51] 50)
"op Int" :: ['a set, 'a set] => 'a set (infixl "\\<inter>" 70)
"op Un" :: ['a set, 'a set] => 'a set (infixl "\\<union>" 65)
"op :" :: ['a, 'a set] => bool ("op \\<in>")
"op :" :: ['a, 'a set] => bool ("(_/ \\<in> _)" [50, 51] 50)
"op ~:" :: ['a, 'a set] => bool ("op \\<notin>")
"op ~:" :: ['a, 'a set] => bool ("(_/ \\<notin> _)" [50, 51] 50)
"UN " :: [idts, bool] => bool ("(3\\<Union>_./ _)" 10)
"INT " :: [idts, bool] => bool ("(3\\<Inter>_./ _)" 10)
"@UNION1" :: [pttrn, 'b set] => 'b set ("(3\\<Union>_./ _)" 10)
"@INTER1" :: [pttrn, 'b set] => 'b set ("(3\\<Inter>_./ _)" 10)
"@UNION" :: [pttrn, 'a set, 'b set] => 'b set ("(3\\<Union>_\\<in>_./ _)" 10)
"@INTER" :: [pttrn, 'a set, 'b set] => 'b set ("(3\\<Inter>_\\<in>_./ _)" 10)
Union :: (('a set) set) => 'a set ("\\<Union>_" [90] 90)
Inter :: (('a set) set) => 'a set ("\\<Inter>_" [90] 90)
"_Ball" :: [pttrn, 'a set, bool] => bool ("(3\\<forall>_\\<in>_./ _)" [0, 0, 10] 10)
"_Bex" :: [pttrn, 'a set, bool] => bool ("(3\\<exists>_\\<in>_./ _)" [0, 0, 10] 10)
translations
"op \\<subseteq>" => "op <= :: [_ set, _ set] => bool"
"op \\<subset>" => "op < :: [_ set, _ set] => bool"
(** Rules and definitions **)
local
rules
(* Isomorphisms between Predicates and Sets *)
mem_Collect_eq "(a : {x. P(x)}) = P(a)"
Collect_mem_eq "{x. x:A} = A"
defs
Ball_def "Ball A P == ! x. x:A --> P(x)"
Bex_def "Bex A P == ? x. x:A & P(x)"
subset_def "A <= B == ! x:A. x:B"
psubset_def "A < B == (A::'a set) <= B & ~ A=B"
Compl_def "- A == {x. ~x:A}"
Un_def "A Un B == {x. x:A | x:B}"
Int_def "A Int B == {x. x:A & x:B}"
set_diff_def "A - B == {x. x:A & ~x:B}"
INTER_def "INTER A B == {y. ! x:A. y: B(x)}"
UNION_def "UNION A B == {y. ? x:A. y: B(x)}"
Inter_def "Inter S == (INT x:S. x)"
Union_def "Union S == (UN x:S. x)"
Pow_def "Pow A == {B. B <= A}"
empty_def "{} == {x. False}"
UNIV_def "UNIV == {x. True}"
insert_def "insert a B == {x. x=a} Un B"
image_def "f``A == {y. ? x:A. y=f(x)}"
end
ML
local
(* Set inclusion *)
fun le_tr' _ (*op <=*) (Type ("fun", (Type ("set", _) :: _))) ts =
list_comb (Syntax.const "_setle", ts)
| le_tr' _ (*op <=*) _ _ = raise Match;
fun less_tr' _ (*op <*) (Type ("fun", (Type ("set", _) :: _))) ts =
list_comb (Syntax.const "_setless", ts)
| less_tr' _ (*op <*) _ _ = raise Match;
(* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *)
(* {y. ? x1..xn. y = e & P} is only translated if [0..n] subset bvs(e) *)
val ex_tr = snd(mk_binder_tr("EX ","Ex"));
fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1
| nvars(_) = 1;
fun setcompr_tr[e,idts,b] =
let val eq = Syntax.const("op =") $ Bound(nvars(idts)) $ e
val P = Syntax.const("op &") $ eq $ b
val exP = ex_tr [idts,P]
in Syntax.const("Collect") $ Abs("",dummyT,exP) end;
val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY"));
fun setcompr_tr'[Abs(_,_,P)] =
let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1)
| ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ e) $ _, n) =
if n>0 andalso m=n andalso
((0 upto (n-1)) subset add_loose_bnos(e,0,[]))
then () else raise Match
fun tr'(_ $ abs) =
let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs]
in Syntax.const("@SetCompr") $ e $ idts $ Q end
in ok(P,0); tr'(P) end;
in
val parse_translation = [("@SetCompr", setcompr_tr)];
val print_translation = [("Collect", setcompr_tr')];
val typed_print_translation = [("op <=", le_tr'), ("op <", less_tr')];
end;