more formal Haskell project setup, with dependencies on packages from "stackage";
(* Title: Tools/induct_tacs.ML
Author: Makarius
Unstructured induction and cases analysis.
*)
signature INDUCT_TACS =
sig
val case_tac: Proof.context -> string -> (binding * string option * mixfix) list ->
thm option -> int -> tactic
val induct_tac: Proof.context -> string option list list ->
thm list option -> int -> tactic
end
structure Induct_Tacs: INDUCT_TACS =
struct
(* case analysis *)
fun check_type ctxt (t, pos) =
let
val u = singleton (Variable.polymorphic ctxt) t;
val U = Term.fastype_of u;
val _ = Term.is_TVar U andalso
error ("Cannot determine type of " ^
quote (Syntax.string_of_term ctxt u) ^ Position.here pos);
in (u, U) end;
fun case_tac ctxt s fixes opt_rule = SUBGOAL (fn (goal, i) =>
let
val rule =
(case opt_rule of
SOME rule => rule
| NONE =>
let
val (t, ctxt') = ctxt
|> Rule_Insts.goal_context goal |> #2
|> Context_Position.set_visible false
|> Rule_Insts.read_term s;
val pos = Syntax.read_input_pos s;
in
(case Induct.find_casesT ctxt' (#2 (check_type ctxt' (t, pos))) of
rule :: _ => rule
| [] => @{thm case_split})
end);
val _ = Method.trace ctxt [rule];
in
(case Induct.vars_of (Thm.term_of (Thm.cprem_of rule 1)) handle THM _ => [] of
Var (xi, _) :: _ => Rule_Insts.res_inst_tac ctxt [((xi, Position.none), s)] fixes rule i
| _ => no_tac)
end);
(* induction *)
local
fun prep_var (Var (xi, _), SOME x) = SOME ((xi, Position.none), x)
| prep_var _ = NONE;
fun prep_inst (concl, xs) =
let val vs = Induct.vars_of concl
in map_filter prep_var (drop (length vs - length xs) vs ~~ xs) end;
in
fun induct_tac ctxt varss opt_rules i st =
let
val goal = Thm.cprem_of st i;
val (_, goal_ctxt) = Rule_Insts.goal_context (Thm.term_of goal) ctxt
and ((_, goal'), _) = Variable.focus_cterm NONE goal ctxt;
val (prems, concl) = Logic.strip_horn (Thm.term_of goal');
fun induct_var name =
let
val t = Syntax.read_term goal_ctxt name;
val pos = Syntax.read_input_pos name;
val (x, _) = Term.dest_Free t handle TERM _ =>
error ("Induction argument not a variable: " ^
quote (Syntax.string_of_term goal_ctxt t) ^ Position.here pos);
val eq_x = fn Free (y, _) => x = y | _ => false;
val _ =
if Term.exists_subterm eq_x concl then ()
else
error ("No such variable in subgoal: " ^
quote (Syntax.string_of_term goal_ctxt t) ^ Position.here pos);
val _ =
if (exists o Term.exists_subterm) eq_x prems then
warning ("Induction variable occurs also among premises: " ^
quote (Syntax.string_of_term goal_ctxt t) ^ Position.here pos)
else ();
in #1 (check_type goal_ctxt (t, pos)) end;
val argss = (map o map o Option.map) induct_var varss;
val rule =
(case opt_rules of
SOME rules => #2 (Rule_Cases.strict_mutual_rule ctxt rules)
| NONE =>
(case map_filter (Rule_Cases.mutual_rule ctxt) (Induct.get_inductT ctxt argss) of
(_, rule) :: _ => rule
| [] => raise THM ("No induction rules", 0, [])));
val rule' = rule |> Conv.fconv_rule (Conv.concl_conv ~1 (Object_Logic.atomize ctxt));
val _ = Method.trace ctxt [rule'];
val concls = Logic.dest_conjunctions (Thm.concl_of rule);
val insts = maps prep_inst (concls ~~ varss) handle ListPair.UnequalLengths =>
error "Induction rule has different numbers of variables";
in Rule_Insts.res_inst_tac ctxt insts [] rule' i st end
handle THM _ => Seq.empty;
end;
(* method syntax *)
local
val rule_spec = Scan.lift (Args.$$$ "rule" -- Args.$$$ ":");
val opt_rule = Scan.option (rule_spec |-- Attrib.thm);
val opt_rules = Scan.option (rule_spec |-- Attrib.thms);
val varss =
Parse.and_list'
(Scan.repeat (Scan.unless rule_spec (Scan.lift (Args.maybe Args.embedded_inner_syntax))));
in
val _ =
Theory.setup
(Method.setup \<^binding>\<open>case_tac\<close>
(Args.goal_spec -- Scan.lift (Args.embedded_inner_syntax -- Parse.for_fixes) -- opt_rule >>
(fn ((quant, (s, xs)), r) => fn ctxt => SIMPLE_METHOD'' quant (case_tac ctxt s xs r)))
"unstructured case analysis on types" #>
Method.setup \<^binding>\<open>induct_tac\<close>
(Args.goal_spec -- varss -- opt_rules >>
(fn ((quant, vs), rs) => fn ctxt => SIMPLE_METHOD'' quant (induct_tac ctxt vs rs)))
"unstructured induction on types");
end;
end;