(* Title: HOL/UNITY/Common
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Common Meeting Time example from Misra (1994)
The state is identified with the one variable in existence.
From Misra, "A Logic for Concurrent Programming" (1994), sections 5.1 and 13.1.
*)
(*Misra's property CMT4: t exceeds no common meeting time*)
Goal "[| ALL m. F : Constrains {m} (maxfg m); n: common |] \
\ ==> F : Stable (atMost n)";
by (dres_inst_tac [("M", "{t. t<=n}")] Elimination_sing 1);
by (asm_full_simp_tac
(simpset() addsimps [atMost_def, Stable_def, common_def, maxfg_def,
le_max_iff_disj]) 1);
by (etac Constrains_weaken_R 1);
by (blast_tac (claset() addIs [order_eq_refl, fmono, gmono, le_trans]) 1);
qed "common_stable";
Goal "[| Init F <= atMost n; \
\ ALL m. F : Constrains {m} (maxfg m); n: common |] \
\ ==> F : Invariant (atMost n)";
by (asm_simp_tac (simpset() addsimps [InvariantI, common_stable]) 1);
qed "common_Invariant";
(*** Some programs that implement the safety property above ***)
Goal "SKIP UNIV : constrains {m} (maxfg m)";
by (simp_tac (simpset() addsimps [constrains_def, maxfg_def, le_max_iff_disj,
fasc]) 1);
result();
(*This one is t := ftime t || t := gtime t*)
Goal "mk_program (UNIV, UNIV, {range(%t.(t,ftime t)), range(%t.(t,gtime t))}) \
\ : constrains {m} (maxfg m)";
by (simp_tac (simpset() addsimps [constrains_def, maxfg_def,
le_max_iff_disj, fasc]) 1);
by (Blast_tac 1);
result();
(*This one is t := max (ftime t) (gtime t)*)
Goal "mk_program (UNIV, UNIV, {range(%t.(t, max (ftime t) (gtime t)))}) \
\ : constrains {m} (maxfg m)";
by (simp_tac
(simpset() addsimps [constrains_def, maxfg_def, max_def, gasc]) 1);
by (Blast_tac 1);
result();
(*This one is t := t+1 if t <max (ftime t) (gtime t) *)
Goal "mk_program (UNIV, UNIV, \
\ { {(t, Suc t) | t. t < max (ftime t) (gtime t)} }) \
\ : constrains {m} (maxfg m)";
by (simp_tac
(simpset() addsimps [constrains_def, maxfg_def, max_def, gasc]) 1);
by (blast_tac (claset() addIs [Suc_leI]) 1);
result();
(*It remans to prove that they satisfy CMT3': t does not decrease,
and that CMT3' implies that t stops changing once common(t) holds.*)
(*** Progress under weak fairness ***)
Addsimps [atMost_Int_atLeast];
Goal "[| ALL m. F : Constrains {m} (maxfg m); \
\ ALL m: lessThan n. F : LeadsTo {m} (greaterThan m); \
\ n: common |] \
\ ==> F : LeadsTo (atMost n) common";
by (rtac LeadsTo_weaken_R 1);
by (res_inst_tac [("f","%x. x"), ("l", "n")] GreaterThan_bounded_induct 1);
by (ALLGOALS Asm_simp_tac);
by (rtac subset_refl 2);
by (blast_tac (claset() addDs [PSP_stable2]
addIs [common_stable, LeadsTo_weaken_R]) 1);
val lemma = result();
(*The "ALL m: -common" form echoes CMT6.*)
Goal "[| ALL m. F : Constrains {m} (maxfg m); \
\ ALL m: -common. F : LeadsTo {m} (greaterThan m); \
\ n: common |] \
\ ==> F : LeadsTo (atMost (LEAST n. n: common)) common";
by (rtac lemma 1);
by (ALLGOALS Asm_simp_tac);
by (etac LeastI 2);
by (blast_tac (claset() addSDs [not_less_Least]) 1);
qed "leadsTo_common";