(* Title: ZF/Coind/Types.thy
Author: Jacob Frost, Cambridge University Computer Laboratory
Copyright 1995 University of Cambridge
*)
theory Types imports Language begin
consts
Ty :: i (* Datatype of types *)
TyConst :: i (* Abstract type of type constants *)
datatype
"Ty" = t_const ("tc \<in> TyConst")
| t_fun ("t1 \<in> Ty","t2 \<in> Ty")
(* Definition of type environments and associated operators *)
consts
TyEnv :: i
datatype
"TyEnv" = te_emp
| te_owr ("te \<in> TyEnv","x \<in> ExVar","t \<in> Ty")
consts
te_dom :: "i => i"
te_app :: "[i,i] => i"
primrec (*domain of the type environment*)
"te_dom (te_emp) = 0"
"te_dom (te_owr(te,x,v)) = te_dom(te) \<union> {x}"
primrec (*lookup up identifiers in the type environment*)
"te_app (te_emp,x) = 0"
"te_app (te_owr(te,y,t),x) = (if x=y then t else te_app(te,x))"
inductive_cases te_owrE [elim!]: "te_owr(te,f,t) \<in> TyEnv"
(*redundant??*)
lemma te_app_owr1: "te_app(te_owr(te,x,t),x) = t"
by simp
(*redundant??*)
lemma te_app_owr2: "x \<noteq> y ==> te_app(te_owr(te,x,t),y) = te_app(te,y)"
by auto
lemma te_app_owr [simp]:
"te_app(te_owr(te,x,t),y) = (if x=y then t else te_app(te,y))"
by auto
lemma te_appI:
"[| te \<in> TyEnv; x \<in> ExVar; x \<in> te_dom(te) |] ==> te_app(te,x) \<in> Ty"
apply (erule_tac P = "x \<in> te_dom (te) " in rev_mp)
apply (erule TyEnv.induct, auto)
done
end