| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46586 | abbec6fa25c8 |
| child 46950 | d0181abdbdac |
| permissions | -rw-r--r-- |
(* Title: HOL/Fun.thy Author: Tobias Nipkow, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge *) header {* Notions about functions *} theory Fun imports Complete_Lattices uses ("Tools/enriched_type.ML") begin lemma apply_inverse: "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u" by auto subsection {* The Identity Function @{text id} *} definition id :: "'a \<Rightarrow> 'a" where "id = (\<lambda>x. x)" lemma id_apply [simp]: "id x = x" by (simp add: id_def) lemma image_id [simp]: "id ` Y = Y" by (simp add: id_def) lemma vimage_id [simp]: "id -` A = A" by (simp add: id_def) subsection {* The Composition Operator @{text "f \<circ> g"} *} definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55) where "f o g = (\<lambda>x. f (g x))" notation (xsymbols) comp (infixl "\<circ>" 55) notation (HTML output) comp (infixl "\<circ>" 55) lemma o_apply [simp]: "(f o g) x = f (g x)" by (simp add: comp_def) lemma o_assoc: "f o (g o h) = f o g o h" by (simp add: comp_def) lemma id_o [simp]: "id o g = g" by (simp add: comp_def) lemma o_id [simp]: "f o id = f" by (simp add: comp_def) lemma o_eq_dest: "a o b = c o d \<Longrightarrow> a (b v) = c (d v)" by (simp only: comp_def) (fact fun_cong) lemma o_eq_elim: "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R" by (erule meta_mp) (fact o_eq_dest) lemma image_compose: "(f o g) ` r = f`(g`r)" by (simp add: comp_def, blast) lemma vimage_compose: "(g \<circ> f) -` x = f -` (g -` x)" by auto lemma UN_o: "UNION A (g o f) = UNION (f`A) g" by (unfold comp_def, blast) subsection {* The Forward Composition Operator @{text fcomp} *} definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60) where "f \<circ>> g = (\<lambda>x. g (f x))" lemma fcomp_apply [simp]: "(f \<circ>> g) x = g (f x)" by (simp add: fcomp_def) lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)" by (simp add: fcomp_def) lemma id_fcomp [simp]: "id \<circ>> g = g" by (simp add: fcomp_def) lemma fcomp_id [simp]: "f \<circ>> id = f" by (simp add: fcomp_def) code_const fcomp (Eval infixl 1 "#>") no_notation fcomp (infixl "\<circ>>" 60) subsection {* Mapping functions *} definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where "map_fun f g h = g \<circ> h \<circ> f" lemma map_fun_apply [simp]: "map_fun f g h x = g (h (f x))" by (simp add: map_fun_def) subsection {* Injectivity and Bijectivity *} definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" where -- "injective" "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)" definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where -- "bijective" "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B" text{*A common special case: functions injective, surjective or bijective over the entire domain type.*} abbreviation "inj f \<equiv> inj_on f UNIV" abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where -- "surjective" "surj f \<equiv> (range f = UNIV)" abbreviation "bij f \<equiv> bij_betw f UNIV UNIV" text{* The negated case: *} translations "\<not> CONST surj f" <= "CONST range f \<noteq> CONST UNIV" lemma injI: assumes "\<And>x y. f x = f y \<Longrightarrow> x = y" shows "inj f" using assms unfolding inj_on_def by auto theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)" by (unfold inj_on_def, blast) lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" by (simp add: inj_on_def) lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)" by (force simp add: inj_on_def) lemma inj_on_cong: "(\<And> a. a : A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A = inj_on g A" unfolding inj_on_def by auto lemma inj_on_strict_subset: "\<lbrakk> inj_on f B; A < B \<rbrakk> \<Longrightarrow> f`A < f`B" unfolding inj_on_def unfolding image_def by blast lemma inj_comp: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)" by (simp add: inj_on_def) lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)" by (simp add: inj_on_def fun_eq_iff) lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)" by (simp add: inj_on_eq_iff) lemma inj_on_id[simp]: "inj_on id A" by (simp add: inj_on_def) lemma inj_on_id2[simp]: "inj_on (%x. x) A" by (simp add: inj_on_def) lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)" unfolding inj_on_def by blast lemma inj_on_INTER: "\<lbrakk>I \<noteq> {}; \<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)\<rbrakk> \<Longrightarrow> inj_on f (\<Inter> i \<in> I. A i)" unfolding inj_on_def by blast lemma inj_on_Inter: "\<lbrakk>S \<noteq> {}; \<And> A. A \<in> S \<Longrightarrow> inj_on f A\<rbrakk> \<Longrightarrow> inj_on f (Inter S)" unfolding inj_on_def by blast lemma inj_on_UNION_chain: assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and INJ: "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" shows "inj_on f (\<Union> i \<in> I. A i)" proof(unfold inj_on_def UNION_eq, auto) fix i j x y assume *: "i \<in> I" "j \<in> I" and **: "x \<in> A i" "y \<in> A j" and ***: "f x = f y" show "x = y" proof- {assume "A i \<le> A j" with ** have "x \<in> A j" by auto with INJ * ** *** have ?thesis by(auto simp add: inj_on_def) } moreover {assume "A j \<le> A i" with ** have "y \<in> A i" by auto with INJ * ** *** have ?thesis by(auto simp add: inj_on_def) } ultimately show ?thesis using CH * by blast qed qed lemma surj_id: "surj id" by simp lemma bij_id[simp]: "bij id" by (simp add: bij_betw_def) lemma inj_onI: "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" by (simp add: inj_on_def) lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" by (unfold inj_on_def, blast) lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" by (blast dest!: inj_onD) lemma comp_inj_on: "[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" by (simp add: comp_def inj_on_def) lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)" apply(simp add:inj_on_def image_def) apply blast done lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y); inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A" apply(unfold inj_on_def) apply blast done lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" by (unfold inj_on_def, blast) lemma inj_singleton: "inj (%s. {s})" by (simp add: inj_on_def) lemma inj_on_empty[iff]: "inj_on f {}" by(simp add: inj_on_def) lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A" by (unfold inj_on_def, blast) lemma inj_on_Un: "inj_on f (A Un B) = (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})" apply(unfold inj_on_def) apply (blast intro:sym) done lemma inj_on_insert[iff]: "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))" apply(unfold inj_on_def) apply (blast intro:sym) done lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)" apply(unfold inj_on_def) apply (blast) done lemma comp_inj_on_iff: "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' o f) A" by(auto simp add: comp_inj_on inj_on_def) lemma inj_on_imageI2: "inj_on (f' o f) A \<Longrightarrow> inj_on f A" by(auto simp add: comp_inj_on inj_on_def) lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)" by auto lemma surjI: assumes *: "\<And> x. g (f x) = x" shows "surj g" using *[symmetric] by auto lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x" by (simp add: surj_def) lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C" by (simp add: surj_def, blast) lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" apply (simp add: comp_def surj_def, clarify) apply (drule_tac x = y in spec, clarify) apply (drule_tac x = x in spec, blast) done lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f" unfolding bij_betw_def by auto lemma bij_betw_empty1: assumes "bij_betw f {} A" shows "A = {}" using assms unfolding bij_betw_def by blast lemma bij_betw_empty2: assumes "bij_betw f A {}" shows "A = {}" using assms unfolding bij_betw_def by blast lemma inj_on_imp_bij_betw: "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)" unfolding bij_betw_def by simp lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f" unfolding bij_betw_def .. lemma bijI: "[| inj f; surj f |] ==> bij f" by (simp add: bij_def) lemma bij_is_inj: "bij f ==> inj f" by (simp add: bij_def) lemma bij_is_surj: "bij f ==> surj f" by (simp add: bij_def) lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A" by (simp add: bij_betw_def) lemma bij_betw_trans: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C" by(auto simp add:bij_betw_def comp_inj_on) lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)" by (rule bij_betw_trans) lemma bij_betw_comp_iff: "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' o f) A A''" by(auto simp add: bij_betw_def inj_on_def) lemma bij_betw_comp_iff2: assumes BIJ: "bij_betw f' A' A''" and IM: "f ` A \<le> A'" shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' o f) A A''" using assms proof(auto simp add: bij_betw_comp_iff) assume *: "bij_betw (f' \<circ> f) A A''" thus "bij_betw f A A'" using IM proof(auto simp add: bij_betw_def) assume "inj_on (f' \<circ> f) A" thus "inj_on f A" using inj_on_imageI2 by blast next fix a' assume **: "a' \<in> A'" hence "f' a' \<in> A''" using BIJ unfolding bij_betw_def by auto then obtain a where 1: "a \<in> A \<and> f'(f a) = f' a'" using * unfolding bij_betw_def by force hence "f a \<in> A'" using IM by auto hence "f a = a'" using BIJ ** 1 unfolding bij_betw_def inj_on_def by auto thus "a' \<in> f ` A" using 1 by auto qed qed lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A" proof - have i: "inj_on f A" and s: "f ` A = B" using assms by(auto simp:bij_betw_def) let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)" { fix a b assume P: "?P b a" hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i]) hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp } note g = this have "inj_on ?g B" proof(rule inj_onI) fix x y assume "x:B" "y:B" "?g x = ?g y" from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp qed moreover have "?g ` B = A" proof(auto simp:image_def) fix b assume "b:B" with s obtain a where P: "?P b a" unfolding image_def by blast thus "?g b \<in> A" using g[OF P] by auto next fix a assume "a:A" then obtain b where P: "?P b a" using s unfolding image_def by blast then have "b:B" using s unfolding image_def by blast with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast qed ultimately show ?thesis by(auto simp:bij_betw_def) qed lemma bij_betw_cong: "(\<And> a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'" unfolding bij_betw_def inj_on_def by force lemma bij_betw_id[intro, simp]: "bij_betw id A A" unfolding bij_betw_def id_def by auto lemma bij_betw_id_iff: "bij_betw id A B \<longleftrightarrow> A = B" by(auto simp add: bij_betw_def) lemma bij_betw_combine: assumes "bij_betw f A B" "bij_betw f C D" "B \<inter> D = {}" shows "bij_betw f (A \<union> C) (B \<union> D)" using assms unfolding bij_betw_def inj_on_Un image_Un by auto lemma bij_betw_UNION_chain: assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and BIJ: "\<And> i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)" shows "bij_betw f (\<Union> i \<in> I. A i) (\<Union> i \<in> I. A' i)" proof(unfold bij_betw_def, auto simp add: image_def) have "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" using BIJ bij_betw_def[of f] by auto thus "inj_on f (\<Union> i \<in> I. A i)" using CH inj_on_UNION_chain[of I A f] by auto next fix i x assume *: "i \<in> I" "x \<in> A i" hence "f x \<in> A' i" using BIJ bij_betw_def[of f] by auto thus "\<exists>j \<in> I. f x \<in> A' j" using * by blast next fix i x' assume *: "i \<in> I" "x' \<in> A' i" hence "\<exists>x \<in> A i. x' = f x" using BIJ bij_betw_def[of f] by blast thus "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x" using * by blast qed lemma bij_betw_subset: assumes BIJ: "bij_betw f A A'" and SUB: "B \<le> A" and IM: "f ` B = B'" shows "bij_betw f B B'" using assms by(unfold bij_betw_def inj_on_def, auto simp add: inj_on_def) lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" by simp lemma surj_vimage_empty: assumes "surj f" shows "f -` A = {} \<longleftrightarrow> A = {}" using surj_image_vimage_eq[OF `surj f`, of A] by (intro iffI) fastforce+ lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" by (simp add: inj_on_def, blast) lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" by (blast intro: sym) lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" by (unfold inj_on_def, blast) lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" apply (unfold bij_def) apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) done lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B" by(blast dest: inj_onD) lemma inj_on_image_Int: "[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" apply (simp add: inj_on_def, blast) done lemma inj_on_image_set_diff: "[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" apply (simp add: inj_on_def, blast) done lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" by (simp add: inj_on_def, blast) lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" by (simp add: inj_on_def, blast) lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" by (blast dest: injD) lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" by (simp add: inj_on_def, blast) lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" by (blast dest: injD) (*injectivity's required. Left-to-right inclusion holds even if A is empty*) lemma image_INT: "[| inj_on f C; ALL x:A. B x <= C; j:A |] ==> f ` (INTER A B) = (INT x:A. f ` B x)" apply (simp add: inj_on_def, blast) done (*Compare with image_INT: no use of inj_on, and if f is surjective then it doesn't matter whether A is empty*) lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" apply (simp add: bij_def) apply (simp add: inj_on_def surj_def, blast) done lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" by auto lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" by (auto simp add: inj_on_def) lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" apply (simp add: bij_def) apply (rule equalityI) apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) done lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}" -- {* The inverse image of a singleton under an injective function is included in a singleton. *} apply (auto simp add: inj_on_def) apply (blast intro: the_equality [symmetric]) done lemma inj_on_vimage_singleton: "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}" by (auto simp add: inj_on_def intro: the_equality [symmetric]) lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A" by (auto intro!: inj_onI) lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A" by (auto intro!: inj_onI dest: strict_mono_eq) subsection{*Function Updating*} definition fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where "fun_upd f a b == % x. if x=a then b else f x" nonterminal updbinds and updbind syntax "_updbind" :: "['a, 'a] => updbind" ("(2_ :=/ _)") "" :: "updbind => updbinds" ("_") "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _") "_Update" :: "['a, updbinds] => 'a" ("_/'((_)')" [1000, 0] 900) translations "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" "f(x:=y)" == "CONST fun_upd f x y" (* Hint: to define the sum of two functions (or maps), use sum_case. A nice infix syntax could be defined (in Datatype.thy or below) by notation sum_case (infixr "'(+')"80) *) lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" apply (simp add: fun_upd_def, safe) apply (erule subst) apply (rule_tac [2] ext, auto) done lemma fun_upd_idem: "f x = y ==> f(x:=y) = f" by (simp only: fun_upd_idem_iff) lemma fun_upd_triv [iff]: "f(x := f x) = f" by (simp only: fun_upd_idem) lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" by (simp add: fun_upd_def) (* fun_upd_apply supersedes these two, but they are useful if fun_upd_apply is intentionally removed from the simpset *) lemma fun_upd_same: "(f(x:=y)) x = y" by simp lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" by simp lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" by (simp add: fun_eq_iff) lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" by (rule ext, auto) lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A" by (fastforce simp:inj_on_def image_def) lemma fun_upd_image: "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)" by auto lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)" by auto lemma UNION_fun_upd: "UNION J (A(i:=B)) = (UNION (J-{i}) A \<union> (if i\<in>J then B else {}))" by (auto split: if_splits) subsection {* @{text override_on} *} definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b" where "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)" lemma override_on_emptyset[simp]: "override_on f g {} = f" by(simp add:override_on_def) lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a" by(simp add:override_on_def) lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" by(simp add:override_on_def) subsection {* @{text swap} *} definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" where "swap a b f = f (a := f b, b:= f a)" lemma swap_self [simp]: "swap a a f = f" by (simp add: swap_def) lemma swap_commute: "swap a b f = swap b a f" by (rule ext, simp add: fun_upd_def swap_def) lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" by (rule ext, simp add: fun_upd_def swap_def) lemma swap_triple: assumes "a \<noteq> c" and "b \<noteq> c" shows "swap a b (swap b c (swap a b f)) = swap a c f" using assms by (simp add: fun_eq_iff swap_def) lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)" by (rule ext, simp add: fun_upd_def swap_def) lemma swap_image_eq [simp]: assumes "a \<in> A" "b \<in> A" shows "swap a b f ` A = f ` A" proof - have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A" using assms by (auto simp: image_iff swap_def) then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" . with subset[of f] show ?thesis by auto qed lemma inj_on_imp_inj_on_swap: "\<lbrakk>inj_on f A; a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> inj_on (swap a b f) A" by (simp add: inj_on_def swap_def, blast) lemma inj_on_swap_iff [simp]: assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A" proof assume "inj_on (swap a b f) A" with A have "inj_on (swap a b (swap a b f)) A" by (iprover intro: inj_on_imp_inj_on_swap) thus "inj_on f A" by simp next assume "inj_on f A" with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) qed lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)" by simp lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f" by simp lemma bij_betw_swap_iff [simp]: "\<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B" by (auto simp: bij_betw_def) lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f" by simp hide_const (open) swap subsection {* Inversion of injective functions *} definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where "the_inv_into A f == %x. THE y. y : A & f y = x" lemma the_inv_into_f_f: "[| inj_on f A; x : A |] ==> the_inv_into A f (f x) = x" apply (simp add: the_inv_into_def inj_on_def) apply blast done lemma f_the_inv_into_f: "inj_on f A ==> y : f`A ==> f (the_inv_into A f y) = y" apply (simp add: the_inv_into_def) apply (rule the1I2) apply(blast dest: inj_onD) apply blast done lemma the_inv_into_into: "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B" apply (simp add: the_inv_into_def) apply (rule the1I2) apply(blast dest: inj_onD) apply blast done lemma the_inv_into_onto[simp]: "inj_on f A ==> the_inv_into A f ` (f ` A) = A" by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric]) lemma the_inv_into_f_eq: "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x" apply (erule subst) apply (erule the_inv_into_f_f, assumption) done lemma the_inv_into_comp: "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==> the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x" apply (rule the_inv_into_f_eq) apply (fast intro: comp_inj_on) apply (simp add: f_the_inv_into_f the_inv_into_into) apply (simp add: the_inv_into_into) done lemma inj_on_the_inv_into: "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)" by (auto intro: inj_onI simp: image_def the_inv_into_f_f) lemma bij_betw_the_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A" by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into) abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where "the_inv f \<equiv> the_inv_into UNIV f" lemma the_inv_f_f: assumes "inj f" shows "the_inv f (f x) = x" using assms UNIV_I by (rule the_inv_into_f_f) text{*compatibility*} lemmas o_def = comp_def subsection {* Cantor's Paradox *} lemma Cantors_paradox [no_atp]: "\<not>(\<exists>f. f ` A = Pow A)" proof clarify fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast let ?X = "{a \<in> A. a \<notin> f a}" have "?X \<in> Pow A" unfolding Pow_def by auto with * obtain x where "x \<in> A \<and> f x = ?X" by blast thus False by best qed subsection {* Setup *} subsubsection {* Proof tools *} text {* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *} simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ => let fun gen_fun_upd NONE T _ _ = NONE | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y) fun dest_fun_T1 (Type (_, T :: Ts)) = T fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) = let fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) = if v aconv x then SOME g else gen_fun_upd (find g) T v w | find t = NONE in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end fun proc ss ct = let val ctxt = Simplifier.the_context ss val t = Thm.term_of ct in case find_double t of (T, NONE) => NONE | (T, SOME rhs) => SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs)) (fn _ => rtac eq_reflection 1 THEN rtac ext 1 THEN simp_tac (Simplifier.inherit_context ss @{simpset}) 1)) end in proc end *} subsubsection {* Code generator *} code_const "op \<circ>" (SML infixl 5 "o") (Haskell infixr 9 ".") code_const "id" (Haskell "id") subsubsection {* Functorial structure of types *} use "Tools/enriched_type.ML" end