| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 42174 | d0be2722ce9f |
| child 54863 | 82acc20ded73 |
| permissions | -rw-r--r-- |
header {* \chapter{Case Study: Single and Multi-Mutator Garbage Collection Algorithms} \section {Formalization of the Memory} *} theory Graph imports Main begin datatype node = Black | White type_synonym nodes = "node list" type_synonym edge = "nat \<times> nat" type_synonym edges = "edge list" consts Roots :: "nat set" definition Proper_Roots :: "nodes \<Rightarrow> bool" where "Proper_Roots M \<equiv> Roots\<noteq>{} \<and> Roots \<subseteq> {i. i<length M}" definition Proper_Edges :: "(nodes \<times> edges) \<Rightarrow> bool" where "Proper_Edges \<equiv> (\<lambda>(M,E). \<forall>i<length E. fst(E!i)<length M \<and> snd(E!i)<length M)" definition BtoW :: "(edge \<times> nodes) \<Rightarrow> bool" where "BtoW \<equiv> (\<lambda>(e,M). (M!fst e)=Black \<and> (M!snd e)\<noteq>Black)" definition Blacks :: "nodes \<Rightarrow> nat set" where "Blacks M \<equiv> {i. i<length M \<and> M!i=Black}" definition Reach :: "edges \<Rightarrow> nat set" where "Reach E \<equiv> {x. (\<exists>path. 1<length path \<and> path!(length path - 1)\<in>Roots \<and> x=path!0 \<and> (\<forall>i<length path - 1. (\<exists>j<length E. E!j=(path!(i+1), path!i)))) \<or> x\<in>Roots}" text{* Reach: the set of reachable nodes is the set of Roots together with the nodes reachable from some Root by a path represented by a list of nodes (at least two since we traverse at least one edge), where two consecutive nodes correspond to an edge in E. *} subsection {* Proofs about Graphs *} lemmas Graph_defs= Blacks_def Proper_Roots_def Proper_Edges_def BtoW_def declare Graph_defs [simp] subsubsection{* Graph 1 *} lemma Graph1_aux [rule_format]: "\<lbrakk> Roots\<subseteq>Blacks M; \<forall>i<length E. \<not>BtoW(E!i,M)\<rbrakk> \<Longrightarrow> 1< length path \<longrightarrow> (path!(length path - 1))\<in>Roots \<longrightarrow> (\<forall>i<length path - 1. (\<exists>j. j < length E \<and> E!j=(path!(Suc i), path!i))) \<longrightarrow> M!(path!0) = Black" apply(induct_tac "path") apply force apply clarify apply simp apply(case_tac "list") apply force apply simp apply(rotate_tac -2) apply(erule_tac x = "0" in all_dupE) apply simp apply clarify apply(erule allE , erule (1) notE impE) apply simp apply(erule mp) apply(case_tac "lista") apply force apply simp apply(erule mp) apply clarify apply(erule_tac x = "Suc i" in allE) apply force done lemma Graph1: "\<lbrakk>Roots\<subseteq>Blacks M; Proper_Edges(M, E); \<forall>i<length E. \<not>BtoW(E!i,M) \<rbrakk> \<Longrightarrow> Reach E\<subseteq>Blacks M" apply (unfold Reach_def) apply simp apply clarify apply(erule disjE) apply clarify apply(rule conjI) apply(subgoal_tac "0< length path - Suc 0") apply(erule allE , erule (1) notE impE) apply force apply simp apply(rule Graph1_aux) apply auto done subsubsection{* Graph 2 *} lemma Ex_first_occurrence [rule_format]: "P (n::nat) \<longrightarrow> (\<exists>m. P m \<and> (\<forall>i. i<m \<longrightarrow> \<not> P i))"; apply(rule nat_less_induct) apply clarify apply(case_tac "\<forall>m. m<n \<longrightarrow> \<not> P m") apply auto done lemma Compl_lemma: "(n::nat)\<le>l \<Longrightarrow> (\<exists>m. m\<le>l \<and> n=l - m)" apply(rule_tac x = "l - n" in exI) apply arith done lemma Ex_last_occurrence: "\<lbrakk>P (n::nat); n\<le>l\<rbrakk> \<Longrightarrow> (\<exists>m. P (l - m) \<and> (\<forall>i. i<m \<longrightarrow> \<not>P (l - i)))" apply(drule Compl_lemma) apply clarify apply(erule Ex_first_occurrence) done lemma Graph2: "\<lbrakk>T \<in> Reach E; R<length E\<rbrakk> \<Longrightarrow> T \<in> Reach (E[R:=(fst(E!R), T)])" apply (unfold Reach_def) apply clarify apply simp apply(case_tac "\<forall>z<length path. fst(E!R)\<noteq>path!z") apply(rule_tac x = "path" in exI) apply simp apply clarify apply(erule allE , erule (1) notE impE) apply clarify apply(rule_tac x = "j" in exI) apply(case_tac "j=R") apply(erule_tac x = "Suc i" in allE) apply simp apply (force simp add:nth_list_update) apply simp apply(erule exE) apply(subgoal_tac "z \<le> length path - Suc 0") prefer 2 apply arith apply(drule_tac P = "\<lambda>m. m<length path \<and> fst(E!R)=path!m" in Ex_last_occurrence) apply assumption apply clarify apply simp apply(rule_tac x = "(path!0)#(drop (length path - Suc m) path)" in exI) apply simp apply(case_tac "length path - (length path - Suc m)") apply arith apply simp apply(subgoal_tac "(length path - Suc m) + nat \<le> length path") prefer 2 apply arith apply(subgoal_tac "length path - Suc m + nat = length path - Suc 0") prefer 2 apply arith apply clarify apply(case_tac "i") apply(force simp add: nth_list_update) apply simp apply(subgoal_tac "(length path - Suc m) + nata \<le> length path") prefer 2 apply arith apply(subgoal_tac "(length path - Suc m) + (Suc nata) \<le> length path") prefer 2 apply arith apply simp apply(erule_tac x = "length path - Suc m + nata" in allE) apply simp apply clarify apply(rule_tac x = "j" in exI) apply(case_tac "R=j") prefer 2 apply force apply simp apply(drule_tac t = "path ! (length path - Suc m)" in sym) apply simp apply(case_tac " length path - Suc 0 < m") apply(subgoal_tac "(length path - Suc m)=0") prefer 2 apply arith apply(simp del: diff_is_0_eq) apply(subgoal_tac "Suc nata\<le>nat") prefer 2 apply arith apply(drule_tac n = "Suc nata" in Compl_lemma) apply clarify using [[linarith_split_limit = 0]] apply force using [[linarith_split_limit = 9]] apply(drule leI) apply(subgoal_tac "Suc (length path - Suc m + nata)=(length path - Suc 0) - (m - Suc nata)") apply(erule_tac x = "m - (Suc nata)" in allE) apply(case_tac "m") apply simp apply simp apply simp done subsubsection{* Graph 3 *} declare min_max.inf_absorb1 [simp] min_max.inf_absorb2 [simp] lemma Graph3: "\<lbrakk> T\<in>Reach E; R<length E \<rbrakk> \<Longrightarrow> Reach(E[R:=(fst(E!R),T)]) \<subseteq> Reach E" apply (unfold Reach_def) apply clarify apply simp apply(case_tac "\<exists>i<length path - 1. (fst(E!R),T)=(path!(Suc i),path!i)") --{* the changed edge is part of the path *} apply(erule exE) apply(drule_tac P = "\<lambda>i. i<length path - 1 \<and> (fst(E!R),T)=(path!Suc i,path!i)" in Ex_first_occurrence) apply clarify apply(erule disjE) --{* T is NOT a root *} apply clarify apply(rule_tac x = "(take m path)@patha" in exI) apply(subgoal_tac "\<not>(length path\<le>m)") prefer 2 apply arith apply(simp) apply(rule conjI) apply(subgoal_tac "\<not>(m + length patha - 1 < m)") prefer 2 apply arith apply(simp add: nth_append) apply(rule conjI) apply(case_tac "m") apply force apply(case_tac "path") apply force apply force apply clarify apply(case_tac "Suc i\<le>m") apply(erule_tac x = "i" in allE) apply simp apply clarify apply(rule_tac x = "j" in exI) apply(case_tac "Suc i<m") apply(simp add: nth_append) apply(case_tac "R=j") apply(simp add: nth_list_update) apply(case_tac "i=m") apply force apply(erule_tac x = "i" in allE) apply force apply(force simp add: nth_list_update) apply(simp add: nth_append) apply(subgoal_tac "i=m - 1") prefer 2 apply arith apply(case_tac "R=j") apply(erule_tac x = "m - 1" in allE) apply(simp add: nth_list_update) apply(force simp add: nth_list_update) apply(simp add: nth_append) apply(rotate_tac -4) apply(erule_tac x = "i - m" in allE) apply(subgoal_tac "Suc (i - m)=(Suc i - m)" ) prefer 2 apply arith apply simp --{* T is a root *} apply(case_tac "m=0") apply force apply(rule_tac x = "take (Suc m) path" in exI) apply(subgoal_tac "\<not>(length path\<le>Suc m)" ) prefer 2 apply arith apply clarsimp apply(erule_tac x = "i" in allE) apply simp apply clarify apply(case_tac "R=j") apply(force simp add: nth_list_update) apply(force simp add: nth_list_update) --{* the changed edge is not part of the path *} apply(rule_tac x = "path" in exI) apply simp apply clarify apply(erule_tac x = "i" in allE) apply clarify apply(case_tac "R=j") apply(erule_tac x = "i" in allE) apply simp apply(force simp add: nth_list_update) done subsubsection{* Graph 4 *} lemma Graph4: "\<lbrakk>T \<in> Reach E; Roots\<subseteq>Blacks M; I\<le>length E; T<length M; R<length E; \<forall>i<I. \<not>BtoW(E!i,M); R<I; M!fst(E!R)=Black; M!T\<noteq>Black\<rbrakk> \<Longrightarrow> (\<exists>r. I\<le>r \<and> r<length E \<and> BtoW(E[R:=(fst(E!R),T)]!r,M))" apply (unfold Reach_def) apply simp apply(erule disjE) prefer 2 apply force apply clarify --{* there exist a black node in the path to T *} apply(case_tac "\<exists>m<length path. M!(path!m)=Black") apply(erule exE) apply(drule_tac P = "\<lambda>m. m<length path \<and> M!(path!m)=Black" in Ex_first_occurrence) apply clarify apply(case_tac "ma") apply force apply simp apply(case_tac "length path") apply force apply simp apply(erule_tac P = "\<lambda>i. i < nata \<longrightarrow> ?P i" and x = "nat" in allE) apply simp apply clarify apply(erule_tac P = "\<lambda>i. i < Suc nat \<longrightarrow> ?P i" and x = "nat" in allE) apply simp apply(case_tac "j<I") apply(erule_tac x = "j" in allE) apply force apply(rule_tac x = "j" in exI) apply(force simp add: nth_list_update) apply simp apply(rotate_tac -1) apply(erule_tac x = "length path - 1" in allE) apply(case_tac "length path") apply force apply force done declare min_max.inf_absorb1 [simp del] min_max.inf_absorb2 [simp del] subsubsection {* Graph 5 *} lemma Graph5: "\<lbrakk> T \<in> Reach E ; Roots \<subseteq> Blacks M; \<forall>i<R. \<not>BtoW(E!i,M); T<length M; R<length E; M!fst(E!R)=Black; M!snd(E!R)=Black; M!T \<noteq> Black\<rbrakk> \<Longrightarrow> (\<exists>r. R<r \<and> r<length E \<and> BtoW(E[R:=(fst(E!R),T)]!r,M))" apply (unfold Reach_def) apply simp apply(erule disjE) prefer 2 apply force apply clarify --{* there exist a black node in the path to T*} apply(case_tac "\<exists>m<length path. M!(path!m)=Black") apply(erule exE) apply(drule_tac P = "\<lambda>m. m<length path \<and> M!(path!m)=Black" in Ex_first_occurrence) apply clarify apply(case_tac "ma") apply force apply simp apply(case_tac "length path") apply force apply simp apply(erule_tac P = "\<lambda>i. i < nata \<longrightarrow> ?P i" and x = "nat" in allE) apply simp apply clarify apply(erule_tac P = "\<lambda>i. i < Suc nat \<longrightarrow> ?P i" and x = "nat" in allE) apply simp apply(case_tac "j\<le>R") apply(drule le_imp_less_or_eq [of _ R]) apply(erule disjE) apply(erule allE , erule (1) notE impE) apply force apply force apply(rule_tac x = "j" in exI) apply(force simp add: nth_list_update) apply simp apply(rotate_tac -1) apply(erule_tac x = "length path - 1" in allE) apply(case_tac "length path") apply force apply force done subsubsection {* Other lemmas about graphs *} lemma Graph6: "\<lbrakk>Proper_Edges(M,E); R<length E ; T<length M\<rbrakk> \<Longrightarrow> Proper_Edges(M,E[R:=(fst(E!R),T)])" apply (unfold Proper_Edges_def) apply(force simp add: nth_list_update) done lemma Graph7: "\<lbrakk>Proper_Edges(M,E)\<rbrakk> \<Longrightarrow> Proper_Edges(M[T:=a],E)" apply (unfold Proper_Edges_def) apply force done lemma Graph8: "\<lbrakk>Proper_Roots(M)\<rbrakk> \<Longrightarrow> Proper_Roots(M[T:=a])" apply (unfold Proper_Roots_def) apply force done text{* Some specific lemmata for the verification of garbage collection algorithms. *} lemma Graph9: "j<length M \<Longrightarrow> Blacks M\<subseteq>Blacks (M[j := Black])" apply (unfold Blacks_def) apply(force simp add: nth_list_update) done lemma Graph10 [rule_format (no_asm)]: "\<forall>i. M!i=a \<longrightarrow>M[i:=a]=M" apply(induct_tac "M") apply auto apply(case_tac "i") apply auto done lemma Graph11 [rule_format (no_asm)]: "\<lbrakk> M!j\<noteq>Black;j<length M\<rbrakk> \<Longrightarrow> Blacks M \<subset> Blacks (M[j := Black])" apply (unfold Blacks_def) apply(rule psubsetI) apply(force simp add: nth_list_update) apply safe apply(erule_tac c = "j" in equalityCE) apply auto done lemma Graph12: "\<lbrakk>a\<subseteq>Blacks M;j<length M\<rbrakk> \<Longrightarrow> a\<subseteq>Blacks (M[j := Black])" apply (unfold Blacks_def) apply(force simp add: nth_list_update) done lemma Graph13: "\<lbrakk>a\<subset> Blacks M;j<length M\<rbrakk> \<Longrightarrow> a \<subset> Blacks (M[j := Black])" apply (unfold Blacks_def) apply(erule psubset_subset_trans) apply(force simp add: nth_list_update) done declare Graph_defs [simp del] end