| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 44890 | 22f665a2e91c |
| child 51121 | 34dbeb8f16a9 |
| permissions | -rw-r--r-- |
header {* \section{Examples} *} theory RG_Examples imports RG_Syntax begin lemmas definitions [simp]= stable_def Pre_def Rely_def Guar_def Post_def Com_def subsection {* Set Elements of an Array to Zero *} lemma le_less_trans2: "\<lbrakk>(j::nat)<k; i\<le> j\<rbrakk> \<Longrightarrow> i<k" by simp lemma add_le_less_mono: "\<lbrakk> (a::nat) < c; b\<le>d \<rbrakk> \<Longrightarrow> a + b < c + d" by simp record Example1 = A :: "nat list" lemma Example1: "\<turnstile> COBEGIN SCHEME [0 \<le> i < n] (\<acute>A := \<acute>A [i := 0], \<lbrace> n < length \<acute>A \<rbrace>, \<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> \<ordmasculine>A ! i = \<ordfeminine>A ! i \<rbrace>, \<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> (\<forall>j<n. i \<noteq> j \<longrightarrow> \<ordmasculine>A ! j = \<ordfeminine>A ! j) \<rbrace>, \<lbrace> \<acute>A ! i = 0 \<rbrace>) COEND SAT [\<lbrace> n < length \<acute>A \<rbrace>, \<lbrace> \<ordmasculine>A = \<ordfeminine>A \<rbrace>, \<lbrace> True \<rbrace>, \<lbrace> \<forall>i < n. \<acute>A ! i = 0 \<rbrace>]" apply(rule Parallel) apply (auto intro!: Basic) done lemma Example1_parameterized: "k < t \<Longrightarrow> \<turnstile> COBEGIN SCHEME [k*n\<le>i<(Suc k)*n] (\<acute>A:=\<acute>A[i:=0], \<lbrace>t*n < length \<acute>A\<rbrace>, \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> \<ordmasculine>A!i = \<ordfeminine>A!i\<rbrace>, \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>j<length \<ordmasculine>A . i\<noteq>j \<longrightarrow> \<ordmasculine>A!j = \<ordfeminine>A!j)\<rbrace>, \<lbrace>\<acute>A!i=0\<rbrace>) COEND SAT [\<lbrace>t*n < length \<acute>A\<rbrace>, \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>i<n. \<ordmasculine>A!(k*n+i)=\<ordfeminine>A!(k*n+i))\<rbrace>, \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>i<length \<ordmasculine>A . (i<k*n \<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i) \<and> ((Suc k)*n \<le> i\<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i))\<rbrace>, \<lbrace>\<forall>i<n. \<acute>A!(k*n+i) = 0\<rbrace>]" apply(rule Parallel) apply auto apply(erule_tac x="k*n +i" in allE) apply(subgoal_tac "k*n+i <length (A b)") apply force apply(erule le_less_trans2) apply(case_tac t,simp+) apply (simp add:add_commute) apply(simp add: add_le_mono) apply(rule Basic) apply simp apply clarify apply (subgoal_tac "k*n+i< length (A x)") apply simp apply(erule le_less_trans2) apply(case_tac t,simp+) apply (simp add:add_commute) apply(rule add_le_mono, auto) done subsection {* Increment a Variable in Parallel *} subsubsection {* Two components *} record Example2 = x :: nat c_0 :: nat c_1 :: nat lemma Example2: "\<turnstile> COBEGIN (\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_0:=\<acute>c_0 + 1 \<rangle>, \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_0=0\<rbrace>, \<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and> (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 \<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>, \<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and> (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 \<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>, \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_0=1 \<rbrace>) \<parallel> (\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_1:=\<acute>c_1+1 \<rangle>, \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=0 \<rbrace>, \<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and> (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 \<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>, \<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and> (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 \<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>, \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=1\<rbrace>) COEND SAT [\<lbrace>\<acute>x=0 \<and> \<acute>c_0=0 \<and> \<acute>c_1=0\<rbrace>, \<lbrace>\<ordmasculine>x=\<ordfeminine>x \<and> \<ordmasculine>c_0= \<ordfeminine>c_0 \<and> \<ordmasculine>c_1=\<ordfeminine>c_1\<rbrace>, \<lbrace>True\<rbrace>, \<lbrace>\<acute>x=2\<rbrace>]" apply(rule Parallel) apply simp_all apply clarify apply(case_tac i) apply simp apply(rule conjI) apply clarify apply simp apply clarify apply simp apply simp apply(rule conjI) apply clarify apply simp apply clarify apply simp apply(subgoal_tac "j=0") apply (simp) apply arith apply clarify apply(case_tac i,simp,simp) apply clarify apply simp apply(erule_tac x=0 in all_dupE) apply(erule_tac x=1 in allE,simp) apply clarify apply(case_tac i,simp) apply(rule Await) apply simp_all apply(clarify) apply(rule Seq) prefer 2 apply(rule Basic) apply simp_all apply(rule subset_refl) apply(rule Basic) apply simp_all apply clarify apply simp apply(rule Await) apply simp_all apply(clarify) apply(rule Seq) prefer 2 apply(rule Basic) apply simp_all apply(rule subset_refl) apply(auto intro!: Basic) done subsubsection {* Parameterized *} lemma Example2_lemma2_aux: "j<n \<Longrightarrow> (\<Sum>i=0..<n. (b i::nat)) = (\<Sum>i=0..<j. b i) + b j + (\<Sum>i=0..<n-(Suc j) . b (Suc j + i))" apply(induct n) apply simp_all apply(simp add:less_Suc_eq) apply(auto) apply(subgoal_tac "n - j = Suc(n- Suc j)") apply simp apply arith done lemma Example2_lemma2_aux2: "j\<le> s \<Longrightarrow> (\<Sum>i::nat=0..<j. (b (s:=t)) i) = (\<Sum>i=0..<j. b i)" apply(induct j) apply (simp_all cong:setsum_cong) done lemma Example2_lemma2: "\<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i::nat=0..<n. b i)=(\<Sum>i=0..<n. (b (j := Suc 0)) i)" apply(frule_tac b="(b (j:=(Suc 0)))" in Example2_lemma2_aux) apply(erule_tac t="setsum (b(j := (Suc 0))) {0..<n}" in ssubst) apply(frule_tac b=b in Example2_lemma2_aux) apply(erule_tac t="setsum b {0..<n}" in ssubst) apply(subgoal_tac "Suc (setsum b {0..<j} + b j + (\<Sum>i=0..<n - Suc j. b (Suc j + i)))=(setsum b {0..<j} + Suc (b j) + (\<Sum>i=0..<n - Suc j. b (Suc j + i)))") apply(rotate_tac -1) apply(erule ssubst) apply(subgoal_tac "j\<le>j") apply(drule_tac b="b" and t="(Suc 0)" in Example2_lemma2_aux2) apply(rotate_tac -1) apply(erule ssubst) apply simp_all done lemma Example2_lemma2_Suc0: "\<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i::nat=0..< n. b i)=(\<Sum>i=0..< n. (b (j:=Suc 0)) i)" by(simp add:Example2_lemma2) record Example2_parameterized = C :: "nat \<Rightarrow> nat" y :: nat lemma Example2_parameterized: "0<n \<Longrightarrow> \<turnstile> COBEGIN SCHEME [0\<le>i<n] (\<langle> \<acute>y:=\<acute>y+1;; \<acute>C:=\<acute>C (i:=1) \<rangle>, \<lbrace>\<acute>y=(\<Sum>i=0..<n. \<acute>C i) \<and> \<acute>C i=0\<rbrace>, \<lbrace>\<ordmasculine>C i = \<ordfeminine>C i \<and> (\<ordmasculine>y=(\<Sum>i=0..<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i=0..<n. \<ordfeminine>C i))\<rbrace>, \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>C j = \<ordfeminine>C j) \<and> (\<ordmasculine>y=(\<Sum>i=0..<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i=0..<n. \<ordfeminine>C i))\<rbrace>, \<lbrace>\<acute>y=(\<Sum>i=0..<n. \<acute>C i) \<and> \<acute>C i=1\<rbrace>) COEND SAT [\<lbrace>\<acute>y=0 \<and> (\<Sum>i=0..<n. \<acute>C i)=0 \<rbrace>, \<lbrace>\<ordmasculine>C=\<ordfeminine>C \<and> \<ordmasculine>y=\<ordfeminine>y\<rbrace>, \<lbrace>True\<rbrace>, \<lbrace>\<acute>y=n\<rbrace>]" apply(rule Parallel) apply force apply force apply(force) apply clarify apply simp apply(simp cong:setsum_ivl_cong) apply clarify apply simp apply(rule Await) apply simp_all apply clarify apply(rule Seq) prefer 2 apply(rule Basic) apply(rule subset_refl) apply simp+ apply(rule Basic) apply simp apply clarify apply simp apply(simp add:Example2_lemma2_Suc0 cong:if_cong) apply simp+ done subsection {* Find Least Element *} text {* A previous lemma: *} lemma mod_aux :"\<lbrakk>i < (n::nat); a mod n = i; j < a + n; j mod n = i; a < j\<rbrakk> \<Longrightarrow> False" apply(subgoal_tac "a=a div n*n + a mod n" ) prefer 2 apply (simp (no_asm_use)) apply(subgoal_tac "j=j div n*n + j mod n") prefer 2 apply (simp (no_asm_use)) apply simp apply(subgoal_tac "a div n*n < j div n*n") prefer 2 apply arith apply(subgoal_tac "j div n*n < (a div n + 1)*n") prefer 2 apply simp apply (simp only:mult_less_cancel2) apply arith done record Example3 = X :: "nat \<Rightarrow> nat" Y :: "nat \<Rightarrow> nat" lemma Example3: "m mod n=0 \<Longrightarrow> \<turnstile> COBEGIN SCHEME [0\<le>i<n] (WHILE (\<forall>j<n. \<acute>X i < \<acute>Y j) DO IF P(B!(\<acute>X i)) THEN \<acute>Y:=\<acute>Y (i:=\<acute>X i) ELSE \<acute>X:= \<acute>X (i:=(\<acute>X i)+ n) FI OD, \<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i)\<rbrace>, \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y j \<le> \<ordmasculine>Y j) \<and> \<ordmasculine>X i = \<ordfeminine>X i \<and> \<ordmasculine>Y i = \<ordfeminine>Y i\<rbrace>, \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X j = \<ordfeminine>X j \<and> \<ordmasculine>Y j = \<ordfeminine>Y j) \<and> \<ordfeminine>Y i \<le> \<ordmasculine>Y i\<rbrace>, \<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i) \<rbrace>) COEND SAT [\<lbrace> \<forall>i<n. \<acute>X i=i \<and> \<acute>Y i=m+i \<rbrace>,\<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>,\<lbrace>True\<rbrace>, \<lbrace>\<forall>i<n. (\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i)\<rbrace>]" apply(rule Parallel) --{*5 subgoals left *} apply force+ apply clarify apply simp apply(rule While) apply force apply force apply force apply(rule_tac pre'="\<lbrace> \<acute>X i mod n = i \<and> (\<forall>j. j<\<acute>X i \<longrightarrow> j mod n = i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i < n * q \<longrightarrow> P (B!(\<acute>Y i))) \<and> \<acute>X i<\<acute>Y i\<rbrace>" in Conseq) apply force apply(rule subset_refl)+ apply(rule Cond) apply force apply(rule Basic) apply force apply fastforce apply force apply force apply(rule Basic) apply simp apply clarify apply simp apply (case_tac "X x (j mod n) \<le> j") apply (drule le_imp_less_or_eq) apply (erule disjE) apply (drule_tac j=j and n=n and i="j mod n" and a="X x (j mod n)" in mod_aux) apply auto done text {* Same but with a list as auxiliary variable: *} record Example3_list = X :: "nat list" Y :: "nat list" lemma Example3_list: "m mod n=0 \<Longrightarrow> \<turnstile> (COBEGIN SCHEME [0\<le>i<n] (WHILE (\<forall>j<n. \<acute>X!i < \<acute>Y!j) DO IF P(B!(\<acute>X!i)) THEN \<acute>Y:=\<acute>Y[i:=\<acute>X!i] ELSE \<acute>X:= \<acute>X[i:=(\<acute>X!i)+ n] FI OD, \<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i)\<rbrace>, \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y!j \<le> \<ordmasculine>Y!j) \<and> \<ordmasculine>X!i = \<ordfeminine>X!i \<and> \<ordmasculine>Y!i = \<ordfeminine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>, \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X!j = \<ordfeminine>X!j \<and> \<ordmasculine>Y!j = \<ordfeminine>Y!j) \<and> \<ordfeminine>Y!i \<le> \<ordmasculine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>, \<lbrace>(\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i) \<rbrace>) COEND) SAT [\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<forall>i<n. \<acute>X!i=i \<and> \<acute>Y!i=m+i) \<rbrace>, \<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>, \<lbrace>True\<rbrace>, \<lbrace>\<forall>i<n. (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i)\<rbrace>]" apply(rule Parallel) --{* 5 subgoals left *} apply force+ apply clarify apply simp apply(rule While) apply force apply force apply force apply(rule_tac pre'="\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> \<acute>X ! i mod n = i \<and> (\<forall>j. j < \<acute>X ! i \<longrightarrow> j mod n = i \<longrightarrow> \<not> P (B ! j)) \<and> (\<acute>Y ! i < n * q \<longrightarrow> P (B ! (\<acute>Y ! i))) \<and> \<acute>X!i<\<acute>Y!i\<rbrace>" in Conseq) apply force apply(rule subset_refl)+ apply(rule Cond) apply force apply(rule Basic) apply force apply force apply force apply force apply(rule Basic) apply simp apply clarify apply simp apply(rule allI) apply(rule impI)+ apply(case_tac "X x ! i\<le> j") apply(drule le_imp_less_or_eq) apply(erule disjE) apply(drule_tac j=j and n=n and i=i and a="X x ! i" in mod_aux) apply auto done end