| author | wenzelm | 
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 | 
| parent 39246 | 9e58f0499f57 | 
| child 46914 | c2ca2c3d23a6 | 
| permissions | -rw-r--r-- | 
(* Title: HOL/Induct/Tree.thy Author: Stefan Berghofer, TU Muenchen Author: Lawrence C Paulson, Cambridge University Computer Laboratory *) header {* Infinitely branching trees *} theory Tree imports Main begin datatype 'a tree = Atom 'a | Branch "nat => 'a tree" primrec map_tree :: "('a => 'b) => 'a tree => 'b tree" where "map_tree f (Atom a) = Atom (f a)" | "map_tree f (Branch ts) = Branch (\<lambda>x. map_tree f (ts x))" lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g \<circ> f) t" by (induct t) simp_all primrec exists_tree :: "('a => bool) => 'a tree => bool" where "exists_tree P (Atom a) = P a" | "exists_tree P (Branch ts) = (\<exists>x. exists_tree P (ts x))" lemma exists_map: "(!!x. P x ==> Q (f x)) ==> exists_tree P ts ==> exists_tree Q (map_tree f ts)" by (induct ts) auto subsection{*The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.*} datatype brouwer = Zero | Succ "brouwer" | Lim "nat => brouwer" text{*Addition of ordinals*} primrec add :: "[brouwer,brouwer] => brouwer" where "add i Zero = i" | "add i (Succ j) = Succ (add i j)" | "add i (Lim f) = Lim (%n. add i (f n))" lemma add_assoc: "add (add i j) k = add i (add j k)" by (induct k) auto text{*Multiplication of ordinals*} primrec mult :: "[brouwer,brouwer] => brouwer" where "mult i Zero = Zero" | "mult i (Succ j) = add (mult i j) i" | "mult i (Lim f) = Lim (%n. mult i (f n))" lemma add_mult_distrib: "mult i (add j k) = add (mult i j) (mult i k)" by (induct k) (auto simp add: add_assoc) lemma mult_assoc: "mult (mult i j) k = mult i (mult j k)" by (induct k) (auto simp add: add_mult_distrib) text{*We could probably instantiate some axiomatic type classes and use the standard infix operators.*} subsection{*A WF Ordering for The Brouwer ordinals (Michael Compton)*} text{*To use the function package we need an ordering on the Brouwer ordinals. Start with a predecessor relation and form its transitive closure. *} definition brouwer_pred :: "(brouwer * brouwer) set" where "brouwer_pred = (\<Union>i. {(m,n). n = Succ m \<or> (EX f. n = Lim f & m = f i)})" definition brouwer_order :: "(brouwer * brouwer) set" where "brouwer_order = brouwer_pred^+" lemma wf_brouwer_pred: "wf brouwer_pred" by(unfold wf_def brouwer_pred_def, clarify, induct_tac x, blast+) lemma wf_brouwer_order[simp]: "wf brouwer_order" by(unfold brouwer_order_def, rule wf_trancl[OF wf_brouwer_pred]) lemma [simp]: "(j, Succ j) : brouwer_order" by(auto simp add: brouwer_order_def brouwer_pred_def) lemma [simp]: "(f n, Lim f) : brouwer_order" by(auto simp add: brouwer_order_def brouwer_pred_def) text{*Example of a general function*} function add2 :: "brouwer \<Rightarrow> brouwer \<Rightarrow> brouwer" where "add2 i Zero = i" | "add2 i (Succ j) = Succ (add2 i j)" | "add2 i (Lim f) = Lim (\<lambda>n. add2 i (f n))" by pat_completeness auto termination by (relation "inv_image brouwer_order snd") auto lemma add2_assoc: "add2 (add2 i j) k = add2 i (add2 j k)" by (induct k) auto end