| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45214 | 66ba67adafab |
| child 50055 | 94041d602ecb |
| permissions | -rw-r--r-- |
(* Author: Lukas Bulwahn, TU Muenchen *) header {* Lazy sequences *} theory Lazy_Sequence imports List Code_Numeral begin datatype 'a lazy_sequence = Empty | Insert 'a "'a lazy_sequence" definition Lazy_Sequence :: "(unit => ('a * 'a lazy_sequence) option) => 'a lazy_sequence" where "Lazy_Sequence f = (case f () of None => Empty | Some (x, xq) => Insert x xq)" code_datatype Lazy_Sequence primrec yield :: "'a lazy_sequence => ('a * 'a lazy_sequence) option" where "yield Empty = None" | "yield (Insert x xq) = Some (x, xq)" lemma [simp]: "yield xq = Some (x, xq') ==> size xq' < size xq" by (cases xq) auto lemma yield_Seq [code]: "yield (Lazy_Sequence f) = f ()" unfolding Lazy_Sequence_def by (cases "f ()") auto lemma Seq_yield: "Lazy_Sequence (%u. yield f) = f" unfolding Lazy_Sequence_def by (cases f) auto lemma lazy_sequence_size_code [code]: "lazy_sequence_size s xq = (case yield xq of None => 0 | Some (x, xq') => s x + lazy_sequence_size s xq' + 1)" by (cases xq) auto lemma size_code [code]: "size xq = (case yield xq of None => 0 | Some (x, xq') => size xq' + 1)" by (cases xq) auto lemma [code]: "HOL.equal xq yq = (case (yield xq, yield yq) of (None, None) => True | (Some (x, xq'), Some (y, yq')) => (HOL.equal x y) \<and> (HOL.equal xq yq) | _ => False)" apply (cases xq) apply (cases yq) apply (auto simp add: equal_eq) apply (cases yq) apply (auto simp add: equal_eq) done lemma [code nbe]: "HOL.equal (x :: 'a lazy_sequence) x \<longleftrightarrow> True" by (fact equal_refl) lemma seq_case [code]: "lazy_sequence_case f g xq = (case (yield xq) of None => f | Some (x, xq') => g x xq')" by (cases xq) auto lemma [code]: "lazy_sequence_rec f g xq = (case (yield xq) of None => f | Some (x, xq') => g x xq' (lazy_sequence_rec f g xq'))" by (cases xq) auto definition empty :: "'a lazy_sequence" where [code]: "empty = Lazy_Sequence (%u. None)" definition single :: "'a => 'a lazy_sequence" where [code]: "single x = Lazy_Sequence (%u. Some (x, empty))" primrec append :: "'a lazy_sequence => 'a lazy_sequence => 'a lazy_sequence" where "append Empty yq = yq" | "append (Insert x xq) yq = Insert x (append xq yq)" lemma [code]: "append xq yq = Lazy_Sequence (%u. case yield xq of None => yield yq | Some (x, xq') => Some (x, append xq' yq))" unfolding Lazy_Sequence_def apply (cases "xq") apply auto apply (cases "yq") apply auto done primrec flat :: "'a lazy_sequence lazy_sequence => 'a lazy_sequence" where "flat Empty = Empty" | "flat (Insert xq xqq) = append xq (flat xqq)" lemma [code]: "flat xqq = Lazy_Sequence (%u. case yield xqq of None => None | Some (xq, xqq') => yield (append xq (flat xqq')))" apply (cases "xqq") apply (auto simp add: Seq_yield) unfolding Lazy_Sequence_def by auto primrec map :: "('a => 'b) => 'a lazy_sequence => 'b lazy_sequence" where "map f Empty = Empty" | "map f (Insert x xq) = Insert (f x) (map f xq)" lemma [code]: "map f xq = Lazy_Sequence (%u. Option.map (%(x, xq'). (f x, map f xq')) (yield xq))" apply (cases xq) apply (auto simp add: Seq_yield) unfolding Lazy_Sequence_def apply auto done definition bind :: "'a lazy_sequence => ('a => 'b lazy_sequence) => 'b lazy_sequence" where [code]: "bind xq f = flat (map f xq)" definition if_seq :: "bool => unit lazy_sequence" where "if_seq b = (if b then single () else empty)" function iterate_upto :: "(code_numeral => 'a) => code_numeral => code_numeral => 'a Lazy_Sequence.lazy_sequence" where "iterate_upto f n m = Lazy_Sequence.Lazy_Sequence (%u. if n > m then None else Some (f n, iterate_upto f (n + 1) m))" by pat_completeness auto termination by (relation "measure (%(f, n, m). Code_Numeral.nat_of (m + 1 - n))") auto definition not_seq :: "unit lazy_sequence => unit lazy_sequence" where "not_seq xq = (case yield xq of None => single () | Some ((), xq) => empty)" subsection {* Code setup *} fun anamorph :: "('a \<Rightarrow> ('b \<times> 'a) option) \<Rightarrow> code_numeral \<Rightarrow> 'a \<Rightarrow> 'b list \<times> 'a" where "anamorph f k x = (if k = 0 then ([], x) else case f x of None \<Rightarrow> ([], x) | Some (v, y) \<Rightarrow> let (vs, z) = anamorph f (k - 1) y in (v # vs, z))" definition yieldn :: "code_numeral \<Rightarrow> 'a lazy_sequence \<Rightarrow> 'a list \<times> 'a lazy_sequence" where "yieldn = anamorph yield" code_reflect Lazy_Sequence datatypes lazy_sequence = Lazy_Sequence functions map yield yieldn subsection {* Generator Sequences *} subsubsection {* General lazy sequence operation *} definition product :: "'a Lazy_Sequence.lazy_sequence \<Rightarrow> 'b Lazy_Sequence.lazy_sequence \<Rightarrow> ('a * 'b) Lazy_Sequence.lazy_sequence" where "product s1 s2 = Lazy_Sequence.bind s1 (%a. Lazy_Sequence.bind s2 (%b. Lazy_Sequence.single (a, b)))" subsubsection {* Small lazy typeclasses *} class small_lazy = fixes small_lazy :: "code_numeral \<Rightarrow> 'a Lazy_Sequence.lazy_sequence" instantiation unit :: small_lazy begin definition "small_lazy d = Lazy_Sequence.single ()" instance .. end instantiation int :: small_lazy begin text {* maybe optimise this expression -> append (single x) xs == cons x xs Performance difference? *} function small_lazy' :: "int => int => int Lazy_Sequence.lazy_sequence" where "small_lazy' d i = (if d < i then Lazy_Sequence.empty else Lazy_Sequence.append (Lazy_Sequence.single i) (small_lazy' d (i + 1)))" by pat_completeness auto termination by (relation "measure (%(d, i). nat (d + 1 - i))") auto definition "small_lazy d = small_lazy' (Code_Numeral.int_of d) (- (Code_Numeral.int_of d))" instance .. end instantiation prod :: (small_lazy, small_lazy) small_lazy begin definition "small_lazy d = product (small_lazy d) (small_lazy d)" instance .. end instantiation list :: (small_lazy) small_lazy begin fun small_lazy_list :: "code_numeral => 'a list Lazy_Sequence.lazy_sequence" where "small_lazy_list d = Lazy_Sequence.append (Lazy_Sequence.single []) (if d > 0 then Lazy_Sequence.bind (product (small_lazy (d - 1)) (small_lazy (d - 1))) (%(x, xs). Lazy_Sequence.single (x # xs)) else Lazy_Sequence.empty)" instance .. end subsection {* With Hit Bound Value *} text {* assuming in negative context *} type_synonym 'a hit_bound_lazy_sequence = "'a option lazy_sequence" definition hit_bound :: "'a hit_bound_lazy_sequence" where [code]: "hit_bound = Lazy_Sequence (%u. Some (None, empty))" definition hb_single :: "'a => 'a hit_bound_lazy_sequence" where [code]: "hb_single x = Lazy_Sequence (%u. Some (Some x, empty))" primrec hb_flat :: "'a hit_bound_lazy_sequence hit_bound_lazy_sequence => 'a hit_bound_lazy_sequence" where "hb_flat Empty = Empty" | "hb_flat (Insert xq xqq) = append (case xq of None => hit_bound | Some xq => xq) (hb_flat xqq)" lemma [code]: "hb_flat xqq = Lazy_Sequence (%u. case yield xqq of None => None | Some (xq, xqq') => yield (append (case xq of None => hit_bound | Some xq => xq) (hb_flat xqq')))" apply (cases "xqq") apply (auto simp add: Seq_yield) unfolding Lazy_Sequence_def by auto primrec hb_map :: "('a => 'b) => 'a hit_bound_lazy_sequence => 'b hit_bound_lazy_sequence" where "hb_map f Empty = Empty" | "hb_map f (Insert x xq) = Insert (Option.map f x) (hb_map f xq)" lemma [code]: "hb_map f xq = Lazy_Sequence (%u. Option.map (%(x, xq'). (Option.map f x, hb_map f xq')) (yield xq))" apply (cases xq) apply (auto simp add: Seq_yield) unfolding Lazy_Sequence_def apply auto done definition hb_bind :: "'a hit_bound_lazy_sequence => ('a => 'b hit_bound_lazy_sequence) => 'b hit_bound_lazy_sequence" where [code]: "hb_bind xq f = hb_flat (hb_map f xq)" definition hb_if_seq :: "bool => unit hit_bound_lazy_sequence" where "hb_if_seq b = (if b then hb_single () else empty)" definition hb_not_seq :: "unit hit_bound_lazy_sequence => unit lazy_sequence" where "hb_not_seq xq = (case yield xq of None => single () | Some (x, xq) => empty)" hide_type (open) lazy_sequence hide_const (open) Empty Insert Lazy_Sequence yield empty single append flat map bind if_seq iterate_upto not_seq product hide_fact yield.simps empty_def single_def append.simps flat.simps map.simps bind_def iterate_upto.simps product_def if_seq_def not_seq_def end