| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 44890 | 22f665a2e91c |
| child 49962 | a8cc904a6820 |
| permissions | -rw-r--r-- |
(* Author : Jacques D. Fleuriot Copyright : 2001 University of Edinburgh Conversion to Isar and new proofs by Lawrence C Paulson, 2004 Conversion of Mac Laurin to Isar by Lukas Bulwahn and Bernhard Häupler, 2005 *) header{*MacLaurin Series*} theory MacLaurin imports Transcendental begin subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*} text{*This is a very long, messy proof even now that it's been broken down into lemmas.*} lemma Maclaurin_lemma: "0 < h ==> \<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) + (B * ((h^n) / real(fact n)))" by (rule exI[where x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) * real(fact n) / (h^n)"]) simp lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))" by arith lemma fact_diff_Suc [rule_format]: "n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)" by (subst fact_reduce_nat, auto) lemma Maclaurin_lemma2: fixes B assumes DERIV : "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" and INIT : "n = Suc k" defines "difg \<equiv> (\<lambda>m t. diff m t - ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) + B * (t ^ (n - m) / real (fact (n - m)))))" (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)") shows "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t" proof (rule allI impI)+ fix m t assume INIT2: "m < n & 0 \<le> t & t \<le> h" have "DERIV (difg m) t :> diff (Suc m) t - ((\<Sum>x = 0..<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) + real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)))" unfolding difg_def by (auto intro!: DERIV_intros DERIV[rule_format, OF INIT2]) moreover from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m" unfolding atLeast0LessThan[symmetric] by auto have "(\<Sum>x = 0..<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) = (\<Sum>x = 0..<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)))" unfolding intvl atLeast0LessThan by (subst setsum.insert) (auto simp: setsum.reindex) moreover have fact_neq_0: "\<And>x::nat. real (fact x) + real x * real (fact x) \<noteq> 0" by (metis fact_gt_zero_nat not_add_less1 real_of_nat_add real_of_nat_mult real_of_nat_zero_iff) have "\<And>x. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)) = diff (Suc m + x) 0 * t^x / real (fact x)" by (auto simp: field_simps real_of_nat_Suc fact_neq_0 intro!: nonzero_divide_eq_eq[THEN iffD2]) moreover have "real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)) = B * (t ^ (n - Suc m) / real (fact (n - Suc m)))" using `0 < n - m` by (simp add: fact_reduce_nat) ultimately show "DERIV (difg m) t :> difg (Suc m) t" unfolding difg_def by simp qed lemma Maclaurin: assumes h: "0 < h" assumes n: "0 < n" assumes diff_0: "diff 0 = f" assumes diff_Suc: "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t" shows "\<exists>t. 0 < t & t < h & f h = setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} + (diff n t / real (fact n)) * h ^ n" proof - from n obtain m where m: "n = Suc m" by (cases n) (simp add: n) obtain B where f_h: "f h = (\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) + B * (h ^ n / real (fact n))" using Maclaurin_lemma [OF h] .. def g \<equiv> "(\<lambda>t. f t - (setsum (\<lambda>m. (diff m 0 / real(fact m)) * t^m) {0..<n} + (B * (t^n / real(fact n)))))" have g2: "g 0 = 0 & g h = 0" apply (simp add: m f_h g_def del: setsum_op_ivl_Suc) apply (cut_tac n = m and k = "Suc 0" in sumr_offset2) apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc) done def difg \<equiv> "(%m t. diff m t - (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m} + (B * ((t ^ (n - m)) / real (fact (n - m))))))" have difg_0: "difg 0 = g" unfolding difg_def g_def by (simp add: diff_0) have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real. m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" using diff_Suc m unfolding difg_def by (rule Maclaurin_lemma2) have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0" apply clarify apply (simp add: m difg_def) apply (frule less_iff_Suc_add [THEN iffD1], clarify) apply (simp del: setsum_op_ivl_Suc) apply (insert sumr_offset4 [of "Suc 0"]) apply (simp del: setsum_op_ivl_Suc fact_Suc) done have isCont_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> isCont (difg m) x" by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp have differentiable_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> difg m differentiable x" by (rule differentiableI [OF difg_Suc [rule_format]]) simp have difg_Suc_eq_0: "\<And>m t. \<lbrakk>m < n; 0 \<le> t; t \<le> h; DERIV (difg m) t :> 0\<rbrakk> \<Longrightarrow> difg (Suc m) t = 0" by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp have "m < n" using m by simp have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0" using `m < n` proof (induct m) case 0 show ?case proof (rule Rolle) show "0 < h" by fact show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2) show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x" by (simp add: isCont_difg n) show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x" by (simp add: differentiable_difg n) qed next case (Suc m') hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0" proof (rule Rolle) show "0 < t" by fact show "difg (Suc m') 0 = difg (Suc m') t" using t `Suc m' < n` by (simp add: difg_Suc_eq_0 difg_eq_0) show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x" using `t < h` `Suc m' < n` by (simp add: isCont_difg) show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable x" using `t < h` `Suc m' < n` by (simp add: differentiable_difg) qed thus ?case using `t < h` by auto qed then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" by fast hence "difg (Suc m) t = 0" using `m < n` by (simp add: difg_Suc_eq_0) show ?thesis proof (intro exI conjI) show "0 < t" by fact show "t < h" by fact show "f h = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n" using `difg (Suc m) t = 0` by (simp add: m f_h difg_def del: fact_Suc) qed qed lemma Maclaurin_objl: "0 < h & n>0 & diff 0 = f & (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) --> (\<exists>t. 0 < t & t < h & f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n)" by (blast intro: Maclaurin) lemma Maclaurin2: assumes INIT1: "0 < h " and INIT2: "diff 0 = f" and DERIV: "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t" shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n" proof (cases "n") case 0 with INIT1 INIT2 show ?thesis by fastforce next case Suc hence "n > 0" by simp from INIT1 this INIT2 DERIV have "\<exists>t>0. t < h \<and> f h = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n" by (rule Maclaurin) thus ?thesis by fastforce qed lemma Maclaurin2_objl: "0 < h & diff 0 = f & (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) --> (\<exists>t. 0 < t & t \<le> h & f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n)" by (blast intro: Maclaurin2) lemma Maclaurin_minus: assumes "h < 0" "0 < n" "diff 0 = f" and DERIV: "\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t" shows "\<exists>t. h < t & t < 0 & f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n" proof - txt "Transform @{text ABL'} into @{text DERIV_intros} format." note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong] from assms have "\<exists>t>0. t < - h \<and> f (- (- h)) = (\<Sum>m = 0..<n. (- 1) ^ m * diff m (- 0) / real (fact m) * (- h) ^ m) + (- 1) ^ n * diff n (- t) / real (fact n) * (- h) ^ n" by (intro Maclaurin) (auto intro!: DERIV_intros DERIV') then guess t .. moreover have "-1 ^ n * diff n (- t) * (- h) ^ n / real (fact n) = diff n (- t) * h ^ n / real (fact n)" by (auto simp add: power_mult_distrib[symmetric]) moreover have "(SUM m = 0..<n. -1 ^ m * diff m 0 * (- h) ^ m / real (fact m)) = (SUM m = 0..<n. diff m 0 * h ^ m / real (fact m))" by (auto intro: setsum_cong simp add: power_mult_distrib[symmetric]) ultimately have " h < - t \<and> - t < 0 \<and> f h = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n (- t) / real (fact n) * h ^ n" by auto thus ?thesis .. qed lemma Maclaurin_minus_objl: "(h < 0 & n > 0 & diff 0 = f & (\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t)) --> (\<exists>t. h < t & t < 0 & f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n)" by (blast intro: Maclaurin_minus) subsection{*More Convenient "Bidirectional" Version.*} (* not good for PVS sin_approx, cos_approx *) lemma Maclaurin_bi_le_lemma [rule_format]: "n>0 \<longrightarrow> diff 0 0 = (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) + diff n 0 * 0 ^ n / real (fact n)" by (induct "n") auto lemma Maclaurin_bi_le: assumes "diff 0 = f" and DERIV : "\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t" shows "\<exists>t. abs t \<le> abs x & f x = (\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t") proof cases assume "n = 0" with `diff 0 = f` show ?thesis by force next assume "n \<noteq> 0" show ?thesis proof (cases rule: linorder_cases) assume "x = 0" with `n \<noteq> 0` `diff 0 = f` DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" by (force simp add: Maclaurin_bi_le_lemma) thus ?thesis .. next assume "x < 0" with `n \<noteq> 0` DERIV have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t" by (intro Maclaurin_minus) auto then guess t .. with `x < 0` `diff 0 = f` have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp thus ?thesis .. next assume "x > 0" with `n \<noteq> 0` `diff 0 = f` DERIV have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t" by (intro Maclaurin) auto then guess t .. with `x > 0` `diff 0 = f` have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp thus ?thesis .. qed qed lemma Maclaurin_all_lt: assumes INIT1: "diff 0 = f" and INIT2: "0 < n" and INIT3: "x \<noteq> 0" and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x" shows "\<exists>t. 0 < abs t & abs t < abs x & f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t") proof (cases rule: linorder_cases) assume "x = 0" with INIT3 show "?thesis".. next assume "x < 0" with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t" by (intro Maclaurin_minus) auto then guess t .. with `x < 0` have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" by simp thus ?thesis .. next assume "x > 0" with assms have "\<exists>t>0. t < x \<and> f x = ?f x t " by (intro Maclaurin) auto then guess t .. with `x > 0` have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" by simp thus ?thesis .. qed lemma Maclaurin_all_lt_objl: "diff 0 = f & (\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) & x ~= 0 & n > 0 --> (\<exists>t. 0 < abs t & abs t < abs x & f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + (diff n t / real (fact n)) * x ^ n)" by (blast intro: Maclaurin_all_lt) lemma Maclaurin_zero [rule_format]: "x = (0::real) ==> n \<noteq> 0 --> (\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) = diff 0 0" by (induct n, auto) lemma Maclaurin_all_le: assumes INIT: "diff 0 = f" and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x" shows "\<exists>t. abs t \<le> abs x & f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t") proof cases assume "n = 0" with INIT show ?thesis by force next assume "n \<noteq> 0" show ?thesis proof cases assume "x = 0" with `n \<noteq> 0` have "(\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) = diff 0 0" by (intro Maclaurin_zero) auto with INIT `x = 0` `n \<noteq> 0` have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" by force thus ?thesis .. next assume "x \<noteq> 0" with INIT `n \<noteq> 0` DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" by (intro Maclaurin_all_lt) auto then guess t .. hence "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp thus ?thesis .. qed qed lemma Maclaurin_all_le_objl: "diff 0 = f & (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) --> (\<exists>t. abs t \<le> abs x & f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + (diff n t / real (fact n)) * x ^ n)" by (blast intro: Maclaurin_all_le) subsection{*Version for Exponential Function*} lemma Maclaurin_exp_lt: "[| x ~= 0; n > 0 |] ==> (\<exists>t. 0 < abs t & abs t < abs x & exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + (exp t / real (fact n)) * x ^ n)" by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto) lemma Maclaurin_exp_le: "\<exists>t. abs t \<le> abs x & exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + (exp t / real (fact n)) * x ^ n" by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto) subsection{*Version for Sine Function*} lemma mod_exhaust_less_4: "m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)" by auto lemma Suc_Suc_mult_two_diff_two [rule_format, simp]: "n\<noteq>0 --> Suc (Suc (2 * n - 2)) = 2*n" by (induct "n", auto) lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]: "n\<noteq>0 --> Suc (Suc (4*n - 2)) = 4*n" by (induct "n", auto) lemma Suc_mult_two_diff_one [rule_format, simp]: "n\<noteq>0 --> Suc (2 * n - 1) = 2*n" by (induct "n", auto) text{*It is unclear why so many variant results are needed.*} lemma sin_expansion_lemma: "sin (x + real (Suc m) * pi / 2) = cos (x + real (m) * pi / 2)" by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto) lemma Maclaurin_sin_expansion2: "\<exists>t. abs t \<le> abs x & sin x = (\<Sum>m=0..<n. sin_coeff m * x ^ m) + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" apply (cut_tac f = sin and n = n and x = x and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl) apply safe apply (simp (no_asm)) apply (simp (no_asm) add: sin_expansion_lemma) apply (force intro!: DERIV_intros) apply (subst (asm) setsum_0', clarify, case_tac "a", simp, simp) apply (cases n, simp, simp) apply (rule ccontr, simp) apply (drule_tac x = x in spec, simp) apply (erule ssubst) apply (rule_tac x = t in exI, simp) apply (rule setsum_cong[OF refl]) apply (auto simp add: sin_coeff_def sin_zero_iff odd_Suc_mult_two_ex) done lemma Maclaurin_sin_expansion: "\<exists>t. sin x = (\<Sum>m=0..<n. sin_coeff m * x ^ m) + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" apply (insert Maclaurin_sin_expansion2 [of x n]) apply (blast intro: elim:) done lemma Maclaurin_sin_expansion3: "[| n > 0; 0 < x |] ==> \<exists>t. 0 < t & t < x & sin x = (\<Sum>m=0..<n. sin_coeff m * x ^ m) + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)" apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl) apply safe apply simp apply (simp (no_asm) add: sin_expansion_lemma) apply (force intro!: DERIV_intros) apply (erule ssubst) apply (rule_tac x = t in exI, simp) apply (rule setsum_cong[OF refl]) apply (auto simp add: sin_coeff_def sin_zero_iff odd_Suc_mult_two_ex) done lemma Maclaurin_sin_expansion4: "0 < x ==> \<exists>t. 0 < t & t \<le> x & sin x = (\<Sum>m=0..<n. sin_coeff m * x ^ m) + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl) apply safe apply simp apply (simp (no_asm) add: sin_expansion_lemma) apply (force intro!: DERIV_intros) apply (erule ssubst) apply (rule_tac x = t in exI, simp) apply (rule setsum_cong[OF refl]) apply (auto simp add: sin_coeff_def sin_zero_iff odd_Suc_mult_two_ex) done subsection{*Maclaurin Expansion for Cosine Function*} lemma sumr_cos_zero_one [simp]: "(\<Sum>m=0..<(Suc n). cos_coeff m * 0 ^ m) = 1" by (induct "n", auto) lemma cos_expansion_lemma: "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)" by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto) lemma Maclaurin_cos_expansion: "\<exists>t. abs t \<le> abs x & cos x = (\<Sum>m=0..<n. cos_coeff m * x ^ m) + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl) apply safe apply (simp (no_asm)) apply (simp (no_asm) add: cos_expansion_lemma) apply (case_tac "n", simp) apply (simp del: setsum_op_ivl_Suc) apply (rule ccontr, simp) apply (drule_tac x = x in spec, simp) apply (erule ssubst) apply (rule_tac x = t in exI, simp) apply (rule setsum_cong[OF refl]) apply (auto simp add: cos_coeff_def cos_zero_iff even_mult_two_ex) done lemma Maclaurin_cos_expansion2: "[| 0 < x; n > 0 |] ==> \<exists>t. 0 < t & t < x & cos x = (\<Sum>m=0..<n. cos_coeff m * x ^ m) + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl) apply safe apply simp apply (simp (no_asm) add: cos_expansion_lemma) apply (erule ssubst) apply (rule_tac x = t in exI, simp) apply (rule setsum_cong[OF refl]) apply (auto simp add: cos_coeff_def cos_zero_iff even_mult_two_ex) done lemma Maclaurin_minus_cos_expansion: "[| x < 0; n > 0 |] ==> \<exists>t. x < t & t < 0 & cos x = (\<Sum>m=0..<n. cos_coeff m * x ^ m) + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl) apply safe apply simp apply (simp (no_asm) add: cos_expansion_lemma) apply (erule ssubst) apply (rule_tac x = t in exI, simp) apply (rule setsum_cong[OF refl]) apply (auto simp add: cos_coeff_def cos_zero_iff even_mult_two_ex) done (* ------------------------------------------------------------------------- *) (* Version for ln(1 +/- x). Where is it?? *) (* ------------------------------------------------------------------------- *) lemma sin_bound_lemma: "[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v" by auto lemma Maclaurin_sin_bound: "abs(sin x - (\<Sum>m=0..<n. sin_coeff m * x ^ m)) \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n" proof - have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" by (rule_tac mult_right_mono,simp_all) note est = this[simplified] let ?diff = "\<lambda>(n::nat) x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)" have diff_0: "?diff 0 = sin" by simp have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x" apply (clarify) apply (subst (1 2 3) mod_Suc_eq_Suc_mod) apply (cut_tac m=m in mod_exhaust_less_4) apply (safe, auto intro!: DERIV_intros) done from Maclaurin_all_le [OF diff_0 DERIV_diff] obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" and t2: "sin x = (\<Sum>m = 0..<n. ?diff m 0 / real (fact m) * x ^ m) + ?diff n t / real (fact n) * x ^ n" by fast have diff_m_0: "\<And>m. ?diff m 0 = (if even m then 0 else -1 ^ ((m - Suc 0) div 2))" apply (subst even_even_mod_4_iff) apply (cut_tac m=m in mod_exhaust_less_4) apply (elim disjE, simp_all) apply (safe dest!: mod_eqD, simp_all) done show ?thesis unfolding sin_coeff_def apply (subst t2) apply (rule sin_bound_lemma) apply (rule setsum_cong[OF refl]) apply (subst diff_m_0, simp) apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono simp add: est mult_nonneg_nonneg mult_ac divide_inverse power_abs [symmetric] abs_mult) done qed end