| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46588 | 4895d7f1be42 |
| child 53015 | a1119cf551e8 |
| permissions | -rw-r--r-- |
(* Title: HOL/Map.thy Author: Tobias Nipkow, based on a theory by David von Oheimb Copyright 1997-2003 TU Muenchen The datatype of `maps' (written ~=>); strongly resembles maps in VDM. *) header {* Maps *} theory Map imports List begin type_synonym ('a,'b) "map" = "'a => 'b option" (infixr "~=>" 0) type_notation (xsymbols) "map" (infixr "\<rightharpoonup>" 0) abbreviation empty :: "'a ~=> 'b" where "empty == %x. None" definition map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" notation (xsymbols) map_comp (infixl "\<circ>\<^sub>m" 55) definition map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" definition restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where "m|`A = (\<lambda>x. if x : A then m x else None)" notation (latex output) restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) definition dom :: "('a ~=> 'b) => 'a set" where "dom m = {a. m a ~= None}" definition ran :: "('a ~=> 'b) => 'b set" where "ran m = {b. EX a. m a = Some b}" definition map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" nonterminal maplets and maplet syntax "_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") "_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") "" :: "maplet => maplets" ("_") "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") "_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) "_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") syntax (xsymbols) "_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") "_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") translations "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" "_MapUpd m (_maplet x y)" == "m(x := CONST Some y)" "_Map ms" == "_MapUpd (CONST empty) ms" "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" primrec map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b" where "map_of [] = empty" | "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)" definition map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b" where "map_upds m xs ys = m ++ map_of (rev (zip xs ys))" translations "_MapUpd m (_maplets x y)" == "CONST map_upds m x y" lemma map_of_Cons_code [code]: "map_of [] k = None" "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" by simp_all subsection {* @{term [source] empty} *} lemma empty_upd_none [simp]: "empty(x := None) = empty" by (rule ext) simp subsection {* @{term [source] map_upd} *} lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" by (rule ext) simp lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" proof assume "t(k \<mapsto> x) = empty" then have "(t(k \<mapsto> x)) k = None" by simp then show False by simp qed lemma map_upd_eqD1: assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" shows "x = y" proof - from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp then show ?thesis by simp qed lemma map_upd_Some_unfold: "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" by auto lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" by auto lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" unfolding image_def apply (simp (no_asm_use) add:full_SetCompr_eq) apply (rule finite_subset) prefer 2 apply assumption apply (auto) done subsection {* @{term [source] map_of} *} lemma map_of_eq_None_iff: "(map_of xys x = None) = (x \<notin> fst ` (set xys))" by (induct xys) simp_all lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" apply (induct xys) apply simp apply (clarsimp split: if_splits) done lemma map_of_eq_Some_iff [simp]: "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" apply (induct xys) apply simp apply (auto simp: map_of_eq_None_iff [symmetric]) done lemma Some_eq_map_of_iff [simp]: "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> \<Longrightarrow> map_of xys x = Some y" apply (induct xys) apply simp apply force done lemma map_of_zip_is_None [simp]: "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" by (induct rule: list_induct2) simp_all lemma map_of_zip_is_Some: assumes "length xs = length ys" shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)" using assms by (induct rule: list_induct2) simp_all lemma map_of_zip_upd: fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" assumes "length ys = length xs" and "length zs = length xs" and "x \<notin> set xs" and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" shows "map_of (zip xs ys) = map_of (zip xs zs)" proof fix x' :: 'a show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" proof (cases "x = x'") case True from assms True map_of_zip_is_None [of xs ys x'] have "map_of (zip xs ys) x' = None" by simp moreover from assms True map_of_zip_is_None [of xs zs x'] have "map_of (zip xs zs) x' = None" by simp ultimately show ?thesis by simp next case False from assms have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto with False show ?thesis by simp qed qed lemma map_of_zip_inject: assumes "length ys = length xs" and "length zs = length xs" and dist: "distinct xs" and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" shows "ys = zs" using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3) case Nil show ?case by simp next case (Cons y ys x xs z zs) from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))` have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp from Cons have "length ys = length xs" and "length zs = length xs" and "x \<notin> set xs" by simp_all then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp moreover from map_of have "y = z" by (rule map_upd_eqD1) ultimately show ?case by simp qed lemma map_of_zip_map: "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)" by (induct xs) (simp_all add: fun_eq_iff) lemma finite_range_map_of: "finite (range (map_of xys))" apply (induct xys) apply (simp_all add: image_constant) apply (rule finite_subset) prefer 2 apply assumption apply auto done lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" by (induct xs) (simp, atomize (full), auto) lemma map_of_mapk_SomeI: "inj f ==> map_of t k = Some x ==> map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" by (induct t) (auto simp add: inj_eq) lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" by (induct l) auto lemma map_of_filter_in: "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z" by (induct xs) auto lemma map_of_map: "map_of (map (\<lambda>(k, v). (k, f v)) xs) = Option.map f \<circ> map_of xs" by (induct xs) (auto simp add: fun_eq_iff) lemma dom_option_map: "dom (\<lambda>k. Option.map (f k) (m k)) = dom m" by (simp add: dom_def) subsection {* @{const Option.map} related *} lemma option_map_o_empty [simp]: "Option.map f o empty = empty" by (rule ext) simp lemma option_map_o_map_upd [simp]: "Option.map f o m(a|->b) = (Option.map f o m)(a|->f b)" by (rule ext) simp subsection {* @{term [source] map_comp} related *} lemma map_comp_empty [simp]: "m \<circ>\<^sub>m empty = empty" "empty \<circ>\<^sub>m m = empty" by (auto simp add: map_comp_def split: option.splits) lemma map_comp_simps [simp]: "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" by (auto simp add: map_comp_def) lemma map_comp_Some_iff: "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" by (auto simp add: map_comp_def split: option.splits) lemma map_comp_None_iff: "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " by (auto simp add: map_comp_def split: option.splits) subsection {* @{text "++"} *} lemma map_add_empty[simp]: "m ++ empty = m" by(simp add: map_add_def) lemma empty_map_add[simp]: "empty ++ m = m" by (rule ext) (simp add: map_add_def split: option.split) lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" by (rule ext) (simp add: map_add_def split: option.split) lemma map_add_Some_iff: "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" by (simp add: map_add_def split: option.split) lemma map_add_SomeD [dest!]: "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" by (rule map_add_Some_iff [THEN iffD1]) lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" by (subst map_add_Some_iff) fast lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" by (simp add: map_add_def split: option.split) lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" by (rule ext) (simp add: map_add_def) lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" by (simp add: map_upds_def) lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)" by (rule ext) (auto simp: map_add_def dom_def split: option.split) lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" unfolding map_add_def apply (induct xs) apply simp apply (rule ext) apply (simp split add: option.split) done lemma finite_range_map_of_map_add: "finite (range f) ==> finite (range (f ++ map_of l))" apply (induct l) apply (auto simp del: fun_upd_apply) apply (erule finite_range_updI) done lemma inj_on_map_add_dom [iff]: "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits) lemma map_upds_fold_map_upd: "m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)" unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length) fix ks :: "'a list" and vs :: "'b list" assume "length ks = length vs" then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))" by(induct arbitrary: m rule: list_induct2) simp_all qed lemma map_add_map_of_foldr: "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m" by (induct ps) (auto simp add: fun_eq_iff map_add_def) subsection {* @{term [source] restrict_map} *} lemma restrict_map_to_empty [simp]: "m|`{} = empty" by (simp add: restrict_map_def) lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)" by (auto simp add: restrict_map_def) lemma restrict_map_empty [simp]: "empty|`D = empty" by (simp add: restrict_map_def) lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" by (simp add: restrict_map_def) lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" by (simp add: restrict_map_def) lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" by (auto simp: restrict_map_def ran_def split: split_if_asm) lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" by (auto simp: restrict_map_def dom_def split: split_if_asm) lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" by (rule ext) (auto simp: restrict_map_def) lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" by (rule ext) (auto simp: restrict_map_def) lemma restrict_fun_upd [simp]: "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" by (simp add: restrict_map_def fun_eq_iff) lemma fun_upd_None_restrict [simp]: "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)" by (simp add: restrict_map_def fun_eq_iff) lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)" by (simp add: restrict_map_def fun_eq_iff) lemma fun_upd_restrict_conv [simp]: "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" by (simp add: restrict_map_def fun_eq_iff) lemma map_of_map_restrict: "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks" by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert) lemma restrict_complement_singleton_eq: "f |` (- {x}) = f(x := None)" by (simp add: restrict_map_def fun_eq_iff) subsection {* @{term [source] map_upds} *} lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" by (simp add: map_upds_def) lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" by (simp add:map_upds_def) lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" by (simp add:map_upds_def) lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" apply(induct xs) apply (clarsimp simp add: neq_Nil_conv) apply (case_tac ys) apply simp apply simp done lemma map_upds_list_update2_drop [simp]: "size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" apply (induct xs arbitrary: m ys i) apply simp apply (case_tac ys) apply simp apply (simp split: nat.split) done lemma map_upd_upds_conv_if: "(f(x|->y))(xs [|->] ys) = (if x : set(take (length ys) xs) then f(xs [|->] ys) else (f(xs [|->] ys))(x|->y))" apply (induct xs arbitrary: x y ys f) apply simp apply (case_tac ys) apply (auto split: split_if simp: fun_upd_twist) done lemma map_upds_twist [simp]: "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" using set_take_subset by (fastforce simp add: map_upd_upds_conv_if) lemma map_upds_apply_nontin [simp]: "x ~: set xs ==> (f(xs[|->]ys)) x = f x" apply (induct xs arbitrary: ys) apply simp apply (case_tac ys) apply (auto simp: map_upd_upds_conv_if) done lemma fun_upds_append_drop [simp]: "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" apply (induct xs arbitrary: m ys) apply simp apply (case_tac ys) apply simp_all done lemma fun_upds_append2_drop [simp]: "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" apply (induct xs arbitrary: m ys) apply simp apply (case_tac ys) apply simp_all done lemma restrict_map_upds[simp]: "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" apply (induct xs arbitrary: m ys) apply simp apply (case_tac ys) apply simp apply (simp add: Diff_insert [symmetric] insert_absorb) apply (simp add: map_upd_upds_conv_if) done subsection {* @{term [source] dom} *} lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty" by (auto simp: dom_def) lemma domI: "m a = Some b ==> a : dom m" by(simp add:dom_def) (* declare domI [intro]? *) lemma domD: "a : dom m ==> \<exists>b. m a = Some b" by (cases "m a") (auto simp add: dom_def) lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" by(simp add:dom_def) lemma dom_empty [simp]: "dom empty = {}" by(simp add:dom_def) lemma dom_fun_upd [simp]: "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" by(auto simp add:dom_def) lemma dom_if: "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}" by (auto split: if_splits) lemma dom_map_of_conv_image_fst: "dom (map_of xys) = fst ` set xys" by (induct xys) (auto simp add: dom_if) lemma dom_map_of_zip [simp]: "length xs = length ys ==> dom (map_of (zip xs ys)) = set xs" by (induct rule: list_induct2) (auto simp add: dom_if) lemma finite_dom_map_of: "finite (dom (map_of l))" by (induct l) (auto simp add: dom_def insert_Collect [symmetric]) lemma dom_map_upds [simp]: "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" apply (induct xs arbitrary: m ys) apply simp apply (case_tac ys) apply auto done lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" by(auto simp:dom_def) lemma dom_override_on [simp]: "dom(override_on f g A) = (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" by(auto simp: dom_def override_on_def) lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" by (rule ext) (force simp: map_add_def dom_def split: option.split) lemma map_add_dom_app_simps: "\<lbrakk> m\<in>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m" "\<lbrakk> m\<notin>dom l1 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m" "\<lbrakk> m\<notin>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l1 m" by (auto simp add: map_add_def split: option.split_asm) lemma dom_const [simp]: "dom (\<lambda>x. Some (f x)) = UNIV" by auto (* Due to John Matthews - could be rephrased with dom *) lemma finite_map_freshness: "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> \<exists>x. f x = None" by(bestsimp dest:ex_new_if_finite) lemma dom_minus: "f x = None \<Longrightarrow> dom f - insert x A = dom f - A" unfolding dom_def by simp lemma insert_dom: "f x = Some y \<Longrightarrow> insert x (dom f) = dom f" unfolding dom_def by auto lemma map_of_map_keys: "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m" by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def) lemma map_of_eqI: assumes set_eq: "set (map fst xs) = set (map fst ys)" assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k" shows "map_of xs = map_of ys" proof (rule ext) fix k show "map_of xs k = map_of ys k" proof (cases "map_of xs k") case None then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff) with set_eq have "k \<notin> set (map fst ys)" by simp then have "map_of ys k = None" by (simp add: map_of_eq_None_iff) with None show ?thesis by simp next case (Some v) then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric]) with map_eq show ?thesis by auto qed qed lemma map_of_eq_dom: assumes "map_of xs = map_of ys" shows "fst ` set xs = fst ` set ys" proof - from assms have "dom (map_of xs) = dom (map_of ys)" by simp then show ?thesis by (simp add: dom_map_of_conv_image_fst) qed subsection {* @{term [source] ran} *} lemma ranI: "m a = Some b ==> b : ran m" by(auto simp: ran_def) (* declare ranI [intro]? *) lemma ran_empty [simp]: "ran empty = {}" by(auto simp: ran_def) lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" unfolding ran_def apply auto apply (subgoal_tac "aa ~= a") apply auto done lemma ran_distinct: assumes dist: "distinct (map fst al)" shows "ran (map_of al) = snd ` set al" using assms proof (induct al) case Nil then show ?case by simp next case (Cons kv al) then have "ran (map_of al) = snd ` set al" by simp moreover from Cons.prems have "map_of al (fst kv) = None" by (simp add: map_of_eq_None_iff) ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp qed subsection {* @{text "map_le"} *} lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" by (simp add: map_le_def) lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" by (force simp add: map_le_def) lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" by (fastforce simp add: map_le_def) lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" by (force simp add: map_le_def) lemma map_le_upds [simp]: "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" apply (induct as arbitrary: f g bs) apply simp apply (case_tac bs) apply auto done lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" by (fastforce simp add: map_le_def dom_def) lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" by (simp add: map_le_def) lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" by (auto simp add: map_le_def dom_def) lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" unfolding map_le_def apply (rule ext) apply (case_tac "x \<in> dom f", simp) apply (case_tac "x \<in> dom g", simp, fastforce) done lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" by (fastforce simp add: map_le_def) lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" by(fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits) lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" by (fastforce simp add: map_le_def map_add_def dom_def) lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])" proof(rule iffI) assume "\<exists>v. f = [x \<mapsto> v]" thus "dom f = {x}" by(auto split: split_if_asm) next assume "dom f = {x}" then obtain v where "f x = Some v" by auto hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def) moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using `dom f = {x}` `f x = Some v` by(auto simp add: map_le_def) ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym) thus "\<exists>v. f = [x \<mapsto> v]" by blast qed subsection {* Various *} lemma set_map_of_compr: assumes distinct: "distinct (map fst xs)" shows "set xs = {(k, v). map_of xs k = Some v}" using assms proof (induct xs) case Nil then show ?case by simp next case (Cons x xs) obtain k v where "x = (k, v)" by (cases x) blast with Cons.prems have "k \<notin> dom (map_of xs)" by (simp add: dom_map_of_conv_image_fst) then have *: "insert (k, v) {(k, v). map_of xs k = Some v} = {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}" by (auto split: if_splits) from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp with * `x = (k, v)` show ?case by simp qed lemma map_of_inject_set: assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)" shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs") proof assume ?lhs moreover from `distinct (map fst xs)` have "set xs = {(k, v). map_of xs k = Some v}" by (rule set_map_of_compr) moreover from `distinct (map fst ys)` have "set ys = {(k, v). map_of ys k = Some v}" by (rule set_map_of_compr) ultimately show ?rhs by simp next assume ?rhs show ?lhs proof fix k show "map_of xs k = map_of ys k" proof (cases "map_of xs k") case None moreover with `?rhs` have "map_of ys k = None" by (simp add: map_of_eq_None_iff) ultimately show ?thesis by simp next case (Some v) moreover with distinct `?rhs` have "map_of ys k = Some v" by simp ultimately show ?thesis by simp qed qed qed end