| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45031 | 9583f2b56f85 |
| child 47108 | 2a1953f0d20d |
| permissions | -rw-r--r-- |
header {*Instanciates the finite cartesian product of euclidean spaces as a euclidean space.*} theory Cartesian_Euclidean_Space imports Finite_Cartesian_Product Integration begin lemma delta_mult_idempotent: "(if k=a then 1 else (0::'a::semiring_1)) * (if k=a then 1 else 0) = (if k=a then 1 else 0)" by (cases "k=a", auto) lemma setsum_Plus: "\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow> (\<Sum>x\<in>A <+> B. g x) = (\<Sum>x\<in>A. g (Inl x)) + (\<Sum>x\<in>B. g (Inr x))" unfolding Plus_def by (subst setsum_Un_disjoint, auto simp add: setsum_reindex) lemma setsum_UNIV_sum: fixes g :: "'a::finite + 'b::finite \<Rightarrow> _" shows "(\<Sum>x\<in>UNIV. g x) = (\<Sum>x\<in>UNIV. g (Inl x)) + (\<Sum>x\<in>UNIV. g (Inr x))" apply (subst UNIV_Plus_UNIV [symmetric]) apply (rule setsum_Plus [OF finite finite]) done lemma setsum_mult_product: "setsum h {..<A * B :: nat} = (\<Sum>i\<in>{..<A}. \<Sum>j\<in>{..<B}. h (j + i * B))" unfolding sumr_group[of h B A, unfolded atLeast0LessThan, symmetric] proof (rule setsum_cong, simp, rule setsum_reindex_cong) fix i show "inj_on (\<lambda>j. j + i * B) {..<B}" by (auto intro!: inj_onI) show "{i * B..<i * B + B} = (\<lambda>j. j + i * B) ` {..<B}" proof safe fix j assume "j \<in> {i * B..<i * B + B}" thus "j \<in> (\<lambda>j. j + i * B) ` {..<B}" by (auto intro!: image_eqI[of _ _ "j - i * B"]) qed simp qed simp subsection{* Basic componentwise operations on vectors. *} instantiation vec :: (times, finite) times begin definition "op * \<equiv> (\<lambda> x y. (\<chi> i. (x$i) * (y$i)))" instance .. end instantiation vec :: (one, finite) one begin definition "1 \<equiv> (\<chi> i. 1)" instance .. end instantiation vec :: (ord, finite) ord begin definition "x \<le> y \<longleftrightarrow> (\<forall>i. x$i \<le> y$i)" definition "x < y \<longleftrightarrow> (\<forall>i. x$i < y$i)" instance .. end text{* The ordering on one-dimensional vectors is linear. *} class cart_one = assumes UNIV_one: "card (UNIV \<Colon> 'a set) = Suc 0" begin subclass finite proof from UNIV_one show "finite (UNIV :: 'a set)" by (auto intro!: card_ge_0_finite) qed end instantiation vec :: (linorder,cart_one) linorder begin instance proof guess a B using UNIV_one[where 'a='b] unfolding card_Suc_eq apply- by(erule exE)+ hence *:"UNIV = {a}" by auto have "\<And>P. (\<forall>i\<in>UNIV. P i) \<longleftrightarrow> P a" unfolding * by auto hence all:"\<And>P. (\<forall>i. P i) \<longleftrightarrow> P a" by auto fix x y z::"'a^'b::cart_one" note * = less_eq_vec_def less_vec_def all vec_eq_iff show "x\<le>x" "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" "x\<le>y \<or> y\<le>x" unfolding * by(auto simp only:field_simps) { assume "x\<le>y" "y\<le>z" thus "x\<le>z" unfolding * by(auto simp only:field_simps) } { assume "x\<le>y" "y\<le>x" thus "x=y" unfolding * by(auto simp only:field_simps) } qed end text{* Constant Vectors *} definition "vec x = (\<chi> i. x)" text{* Also the scalar-vector multiplication. *} definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70) where "c *s x = (\<chi> i. c * (x$i))" subsection {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *} method_setup vector = {* let val ss1 = HOL_basic_ss addsimps [@{thm setsum_addf} RS sym, @{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib}, @{thm setsum_left_distrib}, @{thm setsum_negf} RS sym] val ss2 = @{simpset} addsimps [@{thm plus_vec_def}, @{thm times_vec_def}, @{thm minus_vec_def}, @{thm uminus_vec_def}, @{thm one_vec_def}, @{thm zero_vec_def}, @{thm vec_def}, @{thm scaleR_vec_def}, @{thm vec_lambda_beta}, @{thm vector_scalar_mult_def}] fun vector_arith_tac ths = simp_tac ss1 THEN' (fn i => rtac @{thm setsum_cong2} i ORELSE rtac @{thm setsum_0'} i ORELSE simp_tac (HOL_basic_ss addsimps [@{thm vec_eq_iff}]) i) (* THEN' TRY o clarify_tac HOL_cs THEN' (TRY o rtac @{thm iffI}) *) THEN' asm_full_simp_tac (ss2 addsimps ths) in Attrib.thms >> (fn ths => K (SIMPLE_METHOD' (vector_arith_tac ths))) end *} "lift trivial vector statements to real arith statements" lemma vec_0[simp]: "vec 0 = 0" by (vector zero_vec_def) lemma vec_1[simp]: "vec 1 = 1" by (vector one_vec_def) lemma vec_inj[simp]: "vec x = vec y \<longleftrightarrow> x = y" by vector lemma vec_in_image_vec: "vec x \<in> (vec ` S) \<longleftrightarrow> x \<in> S" by auto lemma vec_add: "vec(x + y) = vec x + vec y" by (vector vec_def) lemma vec_sub: "vec(x - y) = vec x - vec y" by (vector vec_def) lemma vec_cmul: "vec(c * x) = c *s vec x " by (vector vec_def) lemma vec_neg: "vec(- x) = - vec x " by (vector vec_def) lemma vec_setsum: assumes fS: "finite S" shows "vec(setsum f S) = setsum (vec o f) S" apply (induct rule: finite_induct[OF fS]) apply (simp) apply (auto simp add: vec_add) done text{* Obvious "component-pushing". *} lemma vec_component [simp]: "vec x $ i = x" by (vector vec_def) lemma vector_mult_component [simp]: "(x * y)$i = x$i * y$i" by vector lemma vector_smult_component [simp]: "(c *s y)$i = c * (y$i)" by vector lemma cond_component: "(if b then x else y)$i = (if b then x$i else y$i)" by vector lemmas vector_component = vec_component vector_add_component vector_mult_component vector_smult_component vector_minus_component vector_uminus_component vector_scaleR_component cond_component subsection {* Some frequently useful arithmetic lemmas over vectors. *} instance vec :: (semigroup_mult, finite) semigroup_mult by default (vector mult_assoc) instance vec :: (monoid_mult, finite) monoid_mult by default vector+ instance vec :: (ab_semigroup_mult, finite) ab_semigroup_mult by default (vector mult_commute) instance vec :: (ab_semigroup_idem_mult, finite) ab_semigroup_idem_mult by default (vector mult_idem) instance vec :: (comm_monoid_mult, finite) comm_monoid_mult by default vector instance vec :: (semiring, finite) semiring by default (vector field_simps)+ instance vec :: (semiring_0, finite) semiring_0 by default (vector field_simps)+ instance vec :: (semiring_1, finite) semiring_1 by default vector instance vec :: (comm_semiring, finite) comm_semiring by default (vector field_simps)+ instance vec :: (comm_semiring_0, finite) comm_semiring_0 .. instance vec :: (cancel_comm_monoid_add, finite) cancel_comm_monoid_add .. instance vec :: (semiring_0_cancel, finite) semiring_0_cancel .. instance vec :: (comm_semiring_0_cancel, finite) comm_semiring_0_cancel .. instance vec :: (ring, finite) ring .. instance vec :: (semiring_1_cancel, finite) semiring_1_cancel .. instance vec :: (comm_semiring_1, finite) comm_semiring_1 .. instance vec :: (ring_1, finite) ring_1 .. instance vec :: (real_algebra, finite) real_algebra apply intro_classes apply (simp_all add: vec_eq_iff) done instance vec :: (real_algebra_1, finite) real_algebra_1 .. lemma of_nat_index: "(of_nat n :: 'a::semiring_1 ^'n)$i = of_nat n" apply (induct n) apply vector apply vector done lemma one_index[simp]: "(1 :: 'a::one ^'n)$i = 1" by vector instance vec :: (semiring_char_0, finite) semiring_char_0 proof fix m n :: nat show "inj (of_nat :: nat \<Rightarrow> 'a ^ 'b)" by (auto intro!: injI simp add: vec_eq_iff of_nat_index) qed instance vec :: (comm_ring_1, finite) comm_ring_1 .. instance vec :: (ring_char_0, finite) ring_char_0 .. lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x" by (vector mult_assoc) lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x" by (vector field_simps) lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y" by (vector field_simps) lemma vector_smult_lzero[simp]: "(0::'a::mult_zero) *s x = 0" by vector lemma vector_smult_lid[simp]: "(1::'a::monoid_mult) *s x = x" by vector lemma vector_ssub_ldistrib: "(c::'a::ring) *s (x - y) = c *s x - c *s y" by (vector field_simps) lemma vector_smult_rneg: "(c::'a::ring) *s -x = -(c *s x)" by vector lemma vector_smult_lneg: "- (c::'a::ring) *s x = -(c *s x)" by vector lemma vector_sneg_minus1: "-x = (- (1::'a::ring_1)) *s x" by vector lemma vector_smult_rzero[simp]: "c *s 0 = (0::'a::mult_zero ^ 'n)" by vector lemma vector_sub_rdistrib: "((a::'a::ring) - b) *s x = a *s x - b *s x" by (vector field_simps) lemma vec_eq[simp]: "(vec m = vec n) \<longleftrightarrow> (m = n)" by (simp add: vec_eq_iff) lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero) lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0" by vector lemma vector_mul_lcancel[simp]: "a *s x = a *s y \<longleftrightarrow> a = (0::real) \<or> x = y" by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib) lemma vector_mul_rcancel[simp]: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0" by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib) lemma vector_mul_lcancel_imp: "a \<noteq> (0::real) ==> a *s x = a *s y ==> (x = y)" by (metis vector_mul_lcancel) lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b" by (metis vector_mul_rcancel) lemma component_le_norm_cart: "\<bar>x$i\<bar> <= norm x" apply (simp add: norm_vec_def) apply (rule member_le_setL2, simp_all) done lemma norm_bound_component_le_cart: "norm x <= e ==> \<bar>x$i\<bar> <= e" by (metis component_le_norm_cart order_trans) lemma norm_bound_component_lt_cart: "norm x < e ==> \<bar>x$i\<bar> < e" by (metis component_le_norm_cart basic_trans_rules(21)) lemma norm_le_l1_cart: "norm x <= setsum(\<lambda>i. \<bar>x$i\<bar>) UNIV" by (simp add: norm_vec_def setL2_le_setsum) lemma scalar_mult_eq_scaleR: "c *s x = c *\<^sub>R x" unfolding scaleR_vec_def vector_scalar_mult_def by simp lemma dist_mul[simp]: "dist (c *s x) (c *s y) = \<bar>c\<bar> * dist x y" unfolding dist_norm scalar_mult_eq_scaleR unfolding scaleR_right_diff_distrib[symmetric] by simp lemma setsum_component [simp]: fixes f:: " 'a \<Rightarrow> ('b::comm_monoid_add) ^'n" shows "(setsum f S)$i = setsum (\<lambda>x. (f x)$i) S" by (cases "finite S", induct S set: finite, simp_all) lemma setsum_eq: "setsum f S = (\<chi> i. setsum (\<lambda>x. (f x)$i ) S)" by (simp add: vec_eq_iff) lemma setsum_cmul: fixes f:: "'c \<Rightarrow> ('a::semiring_1)^'n" shows "setsum (\<lambda>x. c *s f x) S = c *s setsum f S" by (simp add: vec_eq_iff setsum_right_distrib) (* TODO: use setsum_norm_allsubsets_bound *) lemma setsum_norm_allsubsets_bound_cart: fixes f:: "'a \<Rightarrow> real ^'n" assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e" shows "setsum (\<lambda>x. norm (f x)) P \<le> 2 * real CARD('n) * e" proof- let ?d = "real CARD('n)" let ?nf = "\<lambda>x. norm (f x)" let ?U = "UNIV :: 'n set" have th0: "setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P = setsum (\<lambda>i. setsum (\<lambda>x. \<bar>f x $ i\<bar>) P) ?U" by (rule setsum_commute) have th1: "2 * ?d * e = of_nat (card ?U) * (2 * e)" by (simp add: real_of_nat_def) have "setsum ?nf P \<le> setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P" apply (rule setsum_mono) by (rule norm_le_l1_cart) also have "\<dots> \<le> 2 * ?d * e" unfolding th0 th1 proof(rule setsum_bounded) fix i assume i: "i \<in> ?U" let ?Pp = "{x. x\<in> P \<and> f x $ i \<ge> 0}" let ?Pn = "{x. x \<in> P \<and> f x $ i < 0}" have thp: "P = ?Pp \<union> ?Pn" by auto have thp0: "?Pp \<inter> ?Pn ={}" by auto have PpP: "?Pp \<subseteq> P" and PnP: "?Pn \<subseteq> P" by blast+ have Ppe:"setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp \<le> e" using component_le_norm_cart[of "setsum (\<lambda>x. f x) ?Pp" i] fPs[OF PpP] by (auto intro: abs_le_D1) have Pne: "setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn \<le> e" using component_le_norm_cart[of "setsum (\<lambda>x. - f x) ?Pn" i] fPs[OF PnP] by (auto simp add: setsum_negf intro: abs_le_D1) have "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P = setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp + setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn" apply (subst thp) apply (rule setsum_Un_zero) using fP thp0 by auto also have "\<dots> \<le> 2*e" using Pne Ppe by arith finally show "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P \<le> 2*e" . qed finally show ?thesis . qed lemma if_distr: "(if P then f else g) $ i = (if P then f $ i else g $ i)" by simp lemma split_dimensions'[consumes 1]: assumes "k < DIM('a::euclidean_space^'b)" obtains i j where "i < CARD('b::finite)" and "j < DIM('a::euclidean_space)" and "k = j + i * DIM('a::euclidean_space)" using split_times_into_modulo[OF assms[simplified]] . lemma cart_euclidean_bound[intro]: assumes j:"j < DIM('a::euclidean_space)" shows "j + \<pi>' (i::'b::finite) * DIM('a) < CARD('b) * DIM('a::euclidean_space)" using linear_less_than_times[OF pi'_range j, of i] . lemma (in euclidean_space) forall_CARD_DIM: "(\<forall>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<forall>(i::'b::finite) j. j<DIM('a) \<longrightarrow> P (j + \<pi>' i * DIM('a)))" (is "?l \<longleftrightarrow> ?r") proof (safe elim!: split_times_into_modulo) fix i :: 'b and j assume "j < DIM('a)" note linear_less_than_times[OF pi'_range[of i] this] moreover assume "?l" ultimately show "P (j + \<pi>' i * DIM('a))" by auto next fix i j assume "i < CARD('b)" "j < DIM('a)" and "?r" from `?r`[rule_format, OF `j < DIM('a)`, of "\<pi> i"] `i < CARD('b)` show "P (j + i * DIM('a))" by simp qed lemma (in euclidean_space) exists_CARD_DIM: "(\<exists>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<exists>i::'b::finite. \<exists>j<DIM('a). P (j + \<pi>' i * DIM('a)))" using forall_CARD_DIM[where 'b='b, of "\<lambda>x. \<not> P x"] by blast lemma forall_CARD: "(\<forall>i<CARD('b). P i) \<longleftrightarrow> (\<forall>i::'b::finite. P (\<pi>' i))" using forall_CARD_DIM[where 'a=real, of P] by simp lemma exists_CARD: "(\<exists>i<CARD('b). P i) \<longleftrightarrow> (\<exists>i::'b::finite. P (\<pi>' i))" using exists_CARD_DIM[where 'a=real, of P] by simp lemmas cart_simps = forall_CARD_DIM exists_CARD_DIM forall_CARD exists_CARD lemma cart_euclidean_nth[simp]: fixes x :: "('a::euclidean_space, 'b::finite) vec" assumes j:"j < DIM('a)" shows "x $$ (j + \<pi>' i * DIM('a)) = x $ i $$ j" unfolding euclidean_component_def inner_vec_def basis_eq_pi'[OF j] if_distrib cond_application_beta by (simp add: setsum_cases) lemma real_euclidean_nth: fixes x :: "real^'n" shows "x $$ \<pi>' i = (x $ i :: real)" using cart_euclidean_nth[where 'a=real, of 0 x i] by simp lemmas nth_conv_component = real_euclidean_nth[symmetric] lemma mult_split_eq: fixes A :: nat assumes "x < A" "y < A" shows "x + i * A = y + j * A \<longleftrightarrow> x = y \<and> i = j" proof assume *: "x + i * A = y + j * A" { fix x y i j assume "i < j" "x < A" and *: "x + i * A = y + j * A" hence "x + i * A < Suc i * A" using `x < A` by simp also have "\<dots> \<le> j * A" using `i < j` unfolding mult_le_cancel2 by simp also have "\<dots> \<le> y + j * A" by simp finally have "i = j" using * by simp } note eq = this have "i = j" proof (cases rule: linorder_cases) assume "i < j" from eq[OF this `x < A` *] show "i = j" by simp next assume "j < i" from eq[OF this `y < A` *[symmetric]] show "i = j" by simp qed simp thus "x = y \<and> i = j" using * by simp qed simp instance vec :: (ordered_euclidean_space, finite) ordered_euclidean_space proof fix x y::"'a^'b" show "(x \<le> y) = (\<forall>i<DIM(('a, 'b) vec). x $$ i \<le> y $$ i)" unfolding less_eq_vec_def apply(subst eucl_le) by (simp add: cart_simps) show"(x < y) = (\<forall>i<DIM(('a, 'b) vec). x $$ i < y $$ i)" unfolding less_vec_def apply(subst eucl_less) by (simp add: cart_simps) qed subsection{* Basis vectors in coordinate directions. *} definition "cart_basis k = (\<chi> i. if i = k then 1 else 0)" lemma basis_component [simp]: "cart_basis k $ i = (if k=i then 1 else 0)" unfolding cart_basis_def by simp lemma norm_basis[simp]: shows "norm (cart_basis k :: real ^'n) = 1" apply (simp add: cart_basis_def norm_eq_sqrt_inner) unfolding inner_vec_def apply (vector delta_mult_idempotent) using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"] by auto lemma norm_basis_1: "norm(cart_basis 1 :: real ^'n::{finite,one}) = 1" by (rule norm_basis) lemma vector_choose_size: "0 <= c ==> \<exists>(x::real^'n). norm x = c" by (rule exI[where x="c *\<^sub>R cart_basis arbitrary"]) simp lemma vector_choose_dist: assumes e: "0 <= e" shows "\<exists>(y::real^'n). dist x y = e" proof- from vector_choose_size[OF e] obtain c:: "real ^'n" where "norm c = e" by blast then have "dist x (x - c) = e" by (simp add: dist_norm) then show ?thesis by blast qed lemma basis_inj[intro]: "inj (cart_basis :: 'n \<Rightarrow> real ^'n)" by (simp add: inj_on_def vec_eq_iff) lemma basis_expansion: "setsum (\<lambda>i. (x$i) *s cart_basis i) UNIV = (x::('a::ring_1) ^'n)" (is "?lhs = ?rhs" is "setsum ?f ?S = _") by (auto simp add: vec_eq_iff if_distrib setsum_delta[of "?S", where ?'b = "'a", simplified] cong del: if_weak_cong) lemma smult_conv_scaleR: "c *s x = scaleR c x" unfolding vector_scalar_mult_def scaleR_vec_def by simp lemma basis_expansion': "setsum (\<lambda>i. (x$i) *\<^sub>R cart_basis i) UNIV = x" by (rule basis_expansion [where 'a=real, unfolded smult_conv_scaleR]) lemma basis_expansion_unique: "setsum (\<lambda>i. f i *s cart_basis i) UNIV = (x::('a::comm_ring_1) ^'n) \<longleftrightarrow> (\<forall>i. f i = x$i)" by (simp add: vec_eq_iff setsum_delta if_distrib cong del: if_weak_cong) lemma dot_basis: shows "cart_basis i \<bullet> x = x$i" "x \<bullet> (cart_basis i) = (x$i)" by (auto simp add: inner_vec_def cart_basis_def cond_application_beta if_distrib setsum_delta cong del: if_weak_cong) lemma inner_basis: fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n" shows "inner (cart_basis i) x = inner 1 (x $ i)" and "inner x (cart_basis i) = inner (x $ i) 1" unfolding inner_vec_def cart_basis_def by (auto simp add: cond_application_beta if_distrib setsum_delta cong del: if_weak_cong) lemma basis_eq_0: "cart_basis i = (0::'a::semiring_1^'n) \<longleftrightarrow> False" by (auto simp add: vec_eq_iff) lemma basis_nonzero: shows "cart_basis k \<noteq> (0:: 'a::semiring_1 ^'n)" by (simp add: basis_eq_0) text {* some lemmas to map between Eucl and Cart *} lemma basis_real_n[simp]:"(basis (\<pi>' i)::real^'a) = cart_basis i" unfolding basis_vec_def using pi'_range[where 'n='a] by (auto simp: vec_eq_iff axis_def) subsection {* Orthogonality on cartesian products *} lemma orthogonal_basis: shows "orthogonal (cart_basis i) x \<longleftrightarrow> x$i = (0::real)" by (auto simp add: orthogonal_def inner_vec_def cart_basis_def if_distrib cond_application_beta setsum_delta cong del: if_weak_cong) lemma orthogonal_basis_basis: shows "orthogonal (cart_basis i :: real^'n) (cart_basis j) \<longleftrightarrow> i \<noteq> j" unfolding orthogonal_basis[of i] basis_component[of j] by simp subsection {* Linearity on cartesian products *} lemma linear_vmul_component: assumes lf: "linear f" shows "linear (\<lambda>x. f x $ k *\<^sub>R v)" using lf by (auto simp add: linear_def algebra_simps) subsection{* Adjoints on cartesian products *} text {* TODO: The following lemmas about adjoints should hold for any Hilbert space (i.e. complete inner product space). (see \url{http://en.wikipedia.org/wiki/Hermitian_adjoint}) *} lemma adjoint_works_lemma: fixes f:: "real ^'n \<Rightarrow> real ^'m" assumes lf: "linear f" shows "\<forall>x y. f x \<bullet> y = x \<bullet> adjoint f y" proof- let ?N = "UNIV :: 'n set" let ?M = "UNIV :: 'm set" have fN: "finite ?N" by simp have fM: "finite ?M" by simp {fix y:: "real ^ 'm" let ?w = "(\<chi> i. (f (cart_basis i) \<bullet> y)) :: real ^ 'n" {fix x have "f x \<bullet> y = f (setsum (\<lambda>i. (x$i) *\<^sub>R cart_basis i) ?N) \<bullet> y" by (simp only: basis_expansion') also have "\<dots> = (setsum (\<lambda>i. (x$i) *\<^sub>R f (cart_basis i)) ?N) \<bullet> y" unfolding linear_setsum[OF lf fN] by (simp add: linear_cmul[OF lf]) finally have "f x \<bullet> y = x \<bullet> ?w" apply (simp only: ) apply (simp add: inner_vec_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] field_simps) done} } then show ?thesis unfolding adjoint_def some_eq_ex[of "\<lambda>f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y"] using choice_iff[of "\<lambda>a b. \<forall>x. f x \<bullet> a = x \<bullet> b "] by metis qed lemma adjoint_works: fixes f:: "real ^'n \<Rightarrow> real ^'m" assumes lf: "linear f" shows "x \<bullet> adjoint f y = f x \<bullet> y" using adjoint_works_lemma[OF lf] by metis lemma adjoint_linear: fixes f:: "real ^'n \<Rightarrow> real ^'m" assumes lf: "linear f" shows "linear (adjoint f)" unfolding linear_def vector_eq_ldot[where 'a="real^'n", symmetric] apply safe unfolding inner_simps smult_conv_scaleR adjoint_works[OF lf] by auto lemma adjoint_clauses: fixes f:: "real ^'n \<Rightarrow> real ^'m" assumes lf: "linear f" shows "x \<bullet> adjoint f y = f x \<bullet> y" and "adjoint f y \<bullet> x = y \<bullet> f x" by (simp_all add: adjoint_works[OF lf] inner_commute) lemma adjoint_adjoint: fixes f:: "real ^'n \<Rightarrow> real ^'m" assumes lf: "linear f" shows "adjoint (adjoint f) = f" by (rule adjoint_unique, simp add: adjoint_clauses [OF lf]) subsection {* Matrix operations *} text{* Matrix notation. NB: an MxN matrix is of type @{typ "'a^'n^'m"}, not @{typ "'a^'m^'n"} *} definition matrix_matrix_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'p^'n \<Rightarrow> 'a ^ 'p ^'m" (infixl "**" 70) where "m ** m' == (\<chi> i j. setsum (\<lambda>k. ((m$i)$k) * ((m'$k)$j)) (UNIV :: 'n set)) ::'a ^ 'p ^'m" definition matrix_vector_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n \<Rightarrow> 'a ^ 'm" (infixl "*v" 70) where "m *v x \<equiv> (\<chi> i. setsum (\<lambda>j. ((m$i)$j) * (x$j)) (UNIV ::'n set)) :: 'a^'m" definition vector_matrix_mult :: "'a ^ 'm \<Rightarrow> ('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n " (infixl "v*" 70) where "v v* m == (\<chi> j. setsum (\<lambda>i. ((m$i)$j) * (v$i)) (UNIV :: 'm set)) :: 'a^'n" definition "(mat::'a::zero => 'a ^'n^'n) k = (\<chi> i j. if i = j then k else 0)" definition transpose where "(transpose::'a^'n^'m \<Rightarrow> 'a^'m^'n) A = (\<chi> i j. ((A$j)$i))" definition "(row::'m => 'a ^'n^'m \<Rightarrow> 'a ^'n) i A = (\<chi> j. ((A$i)$j))" definition "(column::'n =>'a^'n^'m =>'a^'m) j A = (\<chi> i. ((A$i)$j))" definition "rows(A::'a^'n^'m) = { row i A | i. i \<in> (UNIV :: 'm set)}" definition "columns(A::'a^'n^'m) = { column i A | i. i \<in> (UNIV :: 'n set)}" lemma mat_0[simp]: "mat 0 = 0" by (vector mat_def) lemma matrix_add_ldistrib: "(A ** (B + C)) = (A ** B) + (A ** C)" by (vector matrix_matrix_mult_def setsum_addf[symmetric] field_simps) lemma matrix_mul_lid: fixes A :: "'a::semiring_1 ^ 'm ^ 'n" shows "mat 1 ** A = A" apply (simp add: matrix_matrix_mult_def mat_def) apply vector by (auto simp only: if_distrib cond_application_beta setsum_delta'[OF finite] mult_1_left mult_zero_left if_True UNIV_I) lemma matrix_mul_rid: fixes A :: "'a::semiring_1 ^ 'm ^ 'n" shows "A ** mat 1 = A" apply (simp add: matrix_matrix_mult_def mat_def) apply vector by (auto simp only: if_distrib cond_application_beta setsum_delta[OF finite] mult_1_right mult_zero_right if_True UNIV_I cong: if_cong) lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C" apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult_assoc) apply (subst setsum_commute) apply simp done lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x" apply (vector matrix_matrix_mult_def matrix_vector_mult_def setsum_right_distrib setsum_left_distrib mult_assoc) apply (subst setsum_commute) apply simp done lemma matrix_vector_mul_lid: "mat 1 *v x = (x::'a::semiring_1 ^ 'n)" apply (vector matrix_vector_mult_def mat_def) by (simp add: if_distrib cond_application_beta setsum_delta' cong del: if_weak_cong) lemma matrix_transpose_mul: "transpose(A ** B) = transpose B ** transpose (A::'a::comm_semiring_1^_^_)" by (simp add: matrix_matrix_mult_def transpose_def vec_eq_iff mult_commute) lemma matrix_eq: fixes A B :: "'a::semiring_1 ^ 'n ^ 'm" shows "A = B \<longleftrightarrow> (\<forall>x. A *v x = B *v x)" (is "?lhs \<longleftrightarrow> ?rhs") apply auto apply (subst vec_eq_iff) apply clarify apply (clarsimp simp add: matrix_vector_mult_def cart_basis_def if_distrib cond_application_beta vec_eq_iff cong del: if_weak_cong) apply (erule_tac x="cart_basis ia" in allE) apply (erule_tac x="i" in allE) by (auto simp add: cart_basis_def if_distrib cond_application_beta setsum_delta[OF finite] cong del: if_weak_cong) lemma matrix_vector_mul_component: shows "((A::real^_^_) *v x)$k = (A$k) \<bullet> x" by (simp add: matrix_vector_mult_def inner_vec_def) lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)" apply (simp add: inner_vec_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac) apply (subst setsum_commute) by simp lemma transpose_mat: "transpose (mat n) = mat n" by (vector transpose_def mat_def) lemma transpose_transpose: "transpose(transpose A) = A" by (vector transpose_def) lemma row_transpose: fixes A:: "'a::semiring_1^_^_" shows "row i (transpose A) = column i A" by (simp add: row_def column_def transpose_def vec_eq_iff) lemma column_transpose: fixes A:: "'a::semiring_1^_^_" shows "column i (transpose A) = row i A" by (simp add: row_def column_def transpose_def vec_eq_iff) lemma rows_transpose: "rows(transpose (A::'a::semiring_1^_^_)) = columns A" by (auto simp add: rows_def columns_def row_transpose intro: set_eqI) lemma columns_transpose: "columns(transpose (A::'a::semiring_1^_^_)) = rows A" by (metis transpose_transpose rows_transpose) text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *} lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)" by (simp add: matrix_vector_mult_def inner_vec_def) lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)" by (simp add: matrix_vector_mult_def vec_eq_iff column_def mult_commute) lemma vector_componentwise: "(x::'a::ring_1^'n) = (\<chi> j. setsum (\<lambda>i. (x$i) * (cart_basis i :: 'a^'n)$j) (UNIV :: 'n set))" apply (subst basis_expansion[symmetric]) by (vector vec_eq_iff setsum_component) lemma linear_componentwise: fixes f:: "real ^'m \<Rightarrow> real ^ _" assumes lf: "linear f" shows "(f x)$j = setsum (\<lambda>i. (x$i) * (f (cart_basis i)$j)) (UNIV :: 'm set)" (is "?lhs = ?rhs") proof- let ?M = "(UNIV :: 'm set)" let ?N = "(UNIV :: 'n set)" have fM: "finite ?M" by simp have "?rhs = (setsum (\<lambda>i.(x$i) *\<^sub>R f (cart_basis i) ) ?M)$j" unfolding vector_smult_component[symmetric] smult_conv_scaleR unfolding setsum_component[of "(\<lambda>i.(x$i) *\<^sub>R f (cart_basis i :: real^'m))" ?M] .. then show ?thesis unfolding linear_setsum_mul[OF lf fM, symmetric] basis_expansion' .. qed text{* Inverse matrices (not necessarily square) *} definition "invertible(A::'a::semiring_1^'n^'m) \<longleftrightarrow> (\<exists>A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)" definition "matrix_inv(A:: 'a::semiring_1^'n^'m) = (SOME A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)" text{* Correspondence between matrices and linear operators. *} definition matrix:: "('a::{plus,times, one, zero}^'m \<Rightarrow> 'a ^ 'n) \<Rightarrow> 'a^'m^'n" where "matrix f = (\<chi> i j. (f(cart_basis j))$i)" lemma matrix_vector_mul_linear: "linear(\<lambda>x. A *v (x::real ^ _))" by (simp add: linear_def matrix_vector_mult_def vec_eq_iff field_simps setsum_right_distrib setsum_addf) lemma matrix_works: assumes lf: "linear f" shows "matrix f *v x = f (x::real ^ 'n)" apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult_commute) apply clarify apply (rule linear_componentwise[OF lf, symmetric]) done lemma matrix_vector_mul: "linear f ==> f = (\<lambda>x. matrix f *v (x::real ^ 'n))" by (simp add: ext matrix_works) lemma matrix_of_matrix_vector_mul: "matrix(\<lambda>x. A *v (x :: real ^ 'n)) = A" by (simp add: matrix_eq matrix_vector_mul_linear matrix_works) lemma matrix_compose: assumes lf: "linear (f::real^'n \<Rightarrow> real^'m)" and lg: "linear (g::real^'m \<Rightarrow> real^_)" shows "matrix (g o f) = matrix g ** matrix f" using lf lg linear_compose[OF lf lg] matrix_works[OF linear_compose[OF lf lg]] by (simp add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def) lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)" by (simp add: matrix_vector_mult_def transpose_def vec_eq_iff mult_commute) lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)" apply (rule adjoint_unique) apply (simp add: transpose_def inner_vec_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib) apply (subst setsum_commute) apply (auto simp add: mult_ac) done lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)" shows "matrix(adjoint f) = transpose(matrix f)" apply (subst matrix_vector_mul[OF lf]) unfolding adjoint_matrix matrix_of_matrix_vector_mul .. subsection {* lambda skolemization on cartesian products *} (* FIXME: rename do choice_cart *) lemma lambda_skolem: "(\<forall>i. \<exists>x. P i x) \<longleftrightarrow> (\<exists>x::'a ^ 'n. \<forall>i. P i (x $ i))" (is "?lhs \<longleftrightarrow> ?rhs") proof- let ?S = "(UNIV :: 'n set)" {assume H: "?rhs" then have ?lhs by auto} moreover {assume H: "?lhs" then obtain f where f:"\<forall>i. P i (f i)" unfolding choice_iff by metis let ?x = "(\<chi> i. (f i)) :: 'a ^ 'n" {fix i from f have "P i (f i)" by metis then have "P i (?x $ i)" by auto } hence "\<forall>i. P i (?x$i)" by metis hence ?rhs by metis } ultimately show ?thesis by metis qed subsection {* Standard bases are a spanning set, and obviously finite. *} lemma span_stdbasis:"span {cart_basis i :: real^'n | i. i \<in> (UNIV :: 'n set)} = UNIV" apply (rule set_eqI) apply auto apply (subst basis_expansion'[symmetric]) apply (rule span_setsum) apply simp apply auto apply (rule span_mul) apply (rule span_superset) apply auto done lemma finite_stdbasis: "finite {cart_basis i ::real^'n |i. i\<in> (UNIV:: 'n set)}" (is "finite ?S") proof- have eq: "?S = cart_basis ` UNIV" by blast show ?thesis unfolding eq by auto qed lemma card_stdbasis: "card {cart_basis i ::real^'n |i. i\<in> (UNIV :: 'n set)} = CARD('n)" (is "card ?S = _") proof- have eq: "?S = cart_basis ` UNIV" by blast show ?thesis unfolding eq using card_image[OF basis_inj] by simp qed lemma independent_stdbasis_lemma: assumes x: "(x::real ^ 'n) \<in> span (cart_basis ` S)" and iS: "i \<notin> S" shows "(x$i) = 0" proof- let ?U = "UNIV :: 'n set" let ?B = "cart_basis ` S" let ?P = "{(x::real^_). \<forall>i\<in> ?U. i \<notin> S \<longrightarrow> x$i =0}" {fix x::"real^_" assume xS: "x\<in> ?B" from xS have "x \<in> ?P" by auto} moreover have "subspace ?P" by (auto simp add: subspace_def) ultimately show ?thesis using x span_induct[of x ?B ?P] iS by blast qed lemma independent_stdbasis: "independent {cart_basis i ::real^'n |i. i\<in> (UNIV :: 'n set)}" proof- let ?I = "UNIV :: 'n set" let ?b = "cart_basis :: _ \<Rightarrow> real ^'n" let ?B = "?b ` ?I" have eq: "{?b i|i. i \<in> ?I} = ?B" by auto {assume d: "dependent ?B" then obtain k where k: "k \<in> ?I" "?b k \<in> span (?B - {?b k})" unfolding dependent_def by auto have eq1: "?B - {?b k} = ?B - ?b ` {k}" by simp have eq2: "?B - {?b k} = ?b ` (?I - {k})" unfolding eq1 apply (rule inj_on_image_set_diff[symmetric]) apply (rule basis_inj) using k(1) by auto from k(2) have th0: "?b k \<in> span (?b ` (?I - {k}))" unfolding eq2 . from independent_stdbasis_lemma[OF th0, of k, simplified] have False by simp} then show ?thesis unfolding eq dependent_def .. qed lemma vector_sub_project_orthogonal_cart: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0" unfolding inner_simps smult_conv_scaleR by auto lemma linear_eq_stdbasis_cart: assumes lf: "linear (f::real^'m \<Rightarrow> _)" and lg: "linear g" and fg: "\<forall>i. f (cart_basis i) = g(cart_basis i)" shows "f = g" proof- let ?U = "UNIV :: 'm set" let ?I = "{cart_basis i:: real^'m|i. i \<in> ?U}" {fix x assume x: "x \<in> (UNIV :: (real^'m) set)" from equalityD2[OF span_stdbasis] have IU: " (UNIV :: (real^'m) set) \<subseteq> span ?I" by blast from linear_eq[OF lf lg IU] fg x have "f x = g x" unfolding Ball_def mem_Collect_eq by metis} then show ?thesis by auto qed lemma bilinear_eq_stdbasis_cart: assumes bf: "bilinear (f:: real^'m \<Rightarrow> real^'n \<Rightarrow> _)" and bg: "bilinear g" and fg: "\<forall>i j. f (cart_basis i) (cart_basis j) = g (cart_basis i) (cart_basis j)" shows "f = g" proof- from fg have th: "\<forall>x \<in> {cart_basis i| i. i\<in> (UNIV :: 'm set)}. \<forall>y\<in> {cart_basis j |j. j \<in> (UNIV :: 'n set)}. f x y = g x y" by blast from bilinear_eq[OF bf bg equalityD2[OF span_stdbasis] equalityD2[OF span_stdbasis] th] show ?thesis by blast qed lemma left_invertible_transpose: "(\<exists>(B). B ** transpose (A) = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). A ** B = mat 1)" by (metis matrix_transpose_mul transpose_mat transpose_transpose) lemma right_invertible_transpose: "(\<exists>(B). transpose (A) ** B = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). B ** A = mat 1)" by (metis matrix_transpose_mul transpose_mat transpose_transpose) lemma matrix_left_invertible_injective: "(\<exists>B. (B::real^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x y. A *v x = A *v y \<longrightarrow> x = y)" proof- {fix B:: "real^'m^'n" and x y assume B: "B ** A = mat 1" and xy: "A *v x = A*v y" from xy have "B*v (A *v x) = B *v (A*v y)" by simp hence "x = y" unfolding matrix_vector_mul_assoc B matrix_vector_mul_lid .} moreover {assume A: "\<forall>x y. A *v x = A *v y \<longrightarrow> x = y" hence i: "inj (op *v A)" unfolding inj_on_def by auto from linear_injective_left_inverse[OF matrix_vector_mul_linear i] obtain g where g: "linear g" "g o op *v A = id" by blast have "matrix g ** A = mat 1" unfolding matrix_eq matrix_vector_mul_lid matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)] using g(2) by (simp add: fun_eq_iff) then have "\<exists>B. (B::real ^'m^'n) ** A = mat 1" by blast} ultimately show ?thesis by blast qed lemma matrix_left_invertible_ker: "(\<exists>B. (B::real ^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x. A *v x = 0 \<longrightarrow> x = 0)" unfolding matrix_left_invertible_injective using linear_injective_0[OF matrix_vector_mul_linear, of A] by (simp add: inj_on_def) lemma matrix_right_invertible_surjective: "(\<exists>B. (A::real^'n^'m) ** (B::real^'m^'n) = mat 1) \<longleftrightarrow> surj (\<lambda>x. A *v x)" proof- {fix B :: "real ^'m^'n" assume AB: "A ** B = mat 1" {fix x :: "real ^ 'm" have "A *v (B *v x) = x" by (simp add: matrix_vector_mul_lid matrix_vector_mul_assoc AB)} hence "surj (op *v A)" unfolding surj_def by metis } moreover {assume sf: "surj (op *v A)" from linear_surjective_right_inverse[OF matrix_vector_mul_linear sf] obtain g:: "real ^'m \<Rightarrow> real ^'n" where g: "linear g" "op *v A o g = id" by blast have "A ** (matrix g) = mat 1" unfolding matrix_eq matrix_vector_mul_lid matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)] using g(2) unfolding o_def fun_eq_iff id_def . hence "\<exists>B. A ** (B::real^'m^'n) = mat 1" by blast } ultimately show ?thesis unfolding surj_def by blast qed lemma matrix_left_invertible_independent_columns: fixes A :: "real^'n^'m" shows "(\<exists>(B::real ^'m^'n). B ** A = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s column i A) (UNIV :: 'n set) = 0 \<longrightarrow> (\<forall>i. c i = 0))" (is "?lhs \<longleftrightarrow> ?rhs") proof- let ?U = "UNIV :: 'n set" {assume k: "\<forall>x. A *v x = 0 \<longrightarrow> x = 0" {fix c i assume c: "setsum (\<lambda>i. c i *s column i A) ?U = 0" and i: "i \<in> ?U" let ?x = "\<chi> i. c i" have th0:"A *v ?x = 0" using c unfolding matrix_mult_vsum vec_eq_iff by auto from k[rule_format, OF th0] i have "c i = 0" by (vector vec_eq_iff)} hence ?rhs by blast} moreover {assume H: ?rhs {fix x assume x: "A *v x = 0" let ?c = "\<lambda>i. ((x$i ):: real)" from H[rule_format, of ?c, unfolded matrix_mult_vsum[symmetric], OF x] have "x = 0" by vector}} ultimately show ?thesis unfolding matrix_left_invertible_ker by blast qed lemma matrix_right_invertible_independent_rows: fixes A :: "real^'n^'m" shows "(\<exists>(B::real^'m^'n). A ** B = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s row i A) (UNIV :: 'm set) = 0 \<longrightarrow> (\<forall>i. c i = 0))" unfolding left_invertible_transpose[symmetric] matrix_left_invertible_independent_columns by (simp add: column_transpose) lemma matrix_right_invertible_span_columns: "(\<exists>(B::real ^'n^'m). (A::real ^'m^'n) ** B = mat 1) \<longleftrightarrow> span (columns A) = UNIV" (is "?lhs = ?rhs") proof- let ?U = "UNIV :: 'm set" have fU: "finite ?U" by simp have lhseq: "?lhs \<longleftrightarrow> (\<forall>y. \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y)" unfolding matrix_right_invertible_surjective matrix_mult_vsum surj_def apply (subst eq_commute) .. have rhseq: "?rhs \<longleftrightarrow> (\<forall>x. x \<in> span (columns A))" by blast {assume h: ?lhs {fix x:: "real ^'n" from h[unfolded lhseq, rule_format, of x] obtain y:: "real ^'m" where y: "setsum (\<lambda>i. (y$i) *s column i A) ?U = x" by blast have "x \<in> span (columns A)" unfolding y[symmetric] apply (rule span_setsum[OF fU]) apply clarify unfolding smult_conv_scaleR apply (rule span_mul) apply (rule span_superset) unfolding columns_def by blast} then have ?rhs unfolding rhseq by blast} moreover {assume h:?rhs let ?P = "\<lambda>(y::real ^'n). \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y" {fix y have "?P y" proof(rule span_induct_alt[of ?P "columns A", folded smult_conv_scaleR]) show "\<exists>x\<Colon>real ^ 'm. setsum (\<lambda>i. (x$i) *s column i A) ?U = 0" by (rule exI[where x=0], simp) next fix c y1 y2 assume y1: "y1 \<in> columns A" and y2: "?P y2" from y1 obtain i where i: "i \<in> ?U" "y1 = column i A" unfolding columns_def by blast from y2 obtain x:: "real ^'m" where x: "setsum (\<lambda>i. (x$i) *s column i A) ?U = y2" by blast let ?x = "(\<chi> j. if j = i then c + (x$i) else (x$j))::real^'m" show "?P (c*s y1 + y2)" proof(rule exI[where x= "?x"], vector, auto simp add: i x[symmetric] if_distrib right_distrib cond_application_beta cong del: if_weak_cong) fix j have th: "\<forall>xa \<in> ?U. (if xa = i then (c + (x$i)) * ((column xa A)$j) else (x$xa) * ((column xa A$j))) = (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))" using i(1) by (simp add: field_simps) have "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j) else (x$xa) * ((column xa A$j))) ?U = setsum (\<lambda>xa. (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))) ?U" apply (rule setsum_cong[OF refl]) using th by blast also have "\<dots> = setsum (\<lambda>xa. if xa = i then c * ((column i A)$j) else 0) ?U + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" by (simp add: setsum_addf) also have "\<dots> = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" unfolding setsum_delta[OF fU] using i(1) by simp finally show "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j) else (x$xa) * ((column xa A$j))) ?U = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" . qed next show "y \<in> span (columns A)" unfolding h by blast qed} then have ?lhs unfolding lhseq ..} ultimately show ?thesis by blast qed lemma matrix_left_invertible_span_rows: "(\<exists>(B::real^'m^'n). B ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> span (rows A) = UNIV" unfolding right_invertible_transpose[symmetric] unfolding columns_transpose[symmetric] unfolding matrix_right_invertible_span_columns .. text {* The same result in terms of square matrices. *} lemma matrix_left_right_inverse: fixes A A' :: "real ^'n^'n" shows "A ** A' = mat 1 \<longleftrightarrow> A' ** A = mat 1" proof- {fix A A' :: "real ^'n^'n" assume AA': "A ** A' = mat 1" have sA: "surj (op *v A)" unfolding surj_def apply clarify apply (rule_tac x="(A' *v y)" in exI) by (simp add: matrix_vector_mul_assoc AA' matrix_vector_mul_lid) from linear_surjective_isomorphism[OF matrix_vector_mul_linear sA] obtain f' :: "real ^'n \<Rightarrow> real ^'n" where f': "linear f'" "\<forall>x. f' (A *v x) = x" "\<forall>x. A *v f' x = x" by blast have th: "matrix f' ** A = mat 1" by (simp add: matrix_eq matrix_works[OF f'(1)] matrix_vector_mul_assoc[symmetric] matrix_vector_mul_lid f'(2)[rule_format]) hence "(matrix f' ** A) ** A' = mat 1 ** A'" by simp hence "matrix f' = A'" by (simp add: matrix_mul_assoc[symmetric] AA' matrix_mul_rid matrix_mul_lid) hence "matrix f' ** A = A' ** A" by simp hence "A' ** A = mat 1" by (simp add: th)} then show ?thesis by blast qed text {* Considering an n-element vector as an n-by-1 or 1-by-n matrix. *} definition "rowvector v = (\<chi> i j. (v$j))" definition "columnvector v = (\<chi> i j. (v$i))" lemma transpose_columnvector: "transpose(columnvector v) = rowvector v" by (simp add: transpose_def rowvector_def columnvector_def vec_eq_iff) lemma transpose_rowvector: "transpose(rowvector v) = columnvector v" by (simp add: transpose_def columnvector_def rowvector_def vec_eq_iff) lemma dot_rowvector_columnvector: "columnvector (A *v v) = A ** columnvector v" by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def) lemma dot_matrix_product: "(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1" by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vec_def) lemma dot_matrix_vector_mul: fixes A B :: "real ^'n ^'n" and x y :: "real ^'n" shows "(A *v x) \<bullet> (B *v y) = (((rowvector x :: real^'n^1) ** ((transpose A ** B) ** (columnvector y :: real ^1^'n)))$1)$1" unfolding dot_matrix_product transpose_columnvector[symmetric] dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc .. lemma infnorm_cart:"infnorm (x::real^'n) = Sup {abs(x$i) |i. i\<in> (UNIV :: 'n set)}" unfolding infnorm_def apply(rule arg_cong[where f=Sup]) apply safe apply(rule_tac x="\<pi> i" in exI) defer apply(rule_tac x="\<pi>' i" in exI) unfolding nth_conv_component using pi'_range by auto lemma infnorm_set_image_cart: "{abs(x$i) |i. i\<in> (UNIV :: _ set)} = (\<lambda>i. abs(x$i)) ` (UNIV)" by blast lemma infnorm_set_lemma_cart: shows "finite {abs((x::'a::abs ^'n)$i) |i. i\<in> (UNIV :: 'n set)}" and "{abs(x$i) |i. i\<in> (UNIV :: 'n::finite set)} \<noteq> {}" unfolding infnorm_set_image_cart by auto lemma component_le_infnorm_cart: shows "\<bar>x$i\<bar> \<le> infnorm (x::real^'n)" unfolding nth_conv_component using component_le_infnorm[of x] . lemma continuous_component: shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x $ i)" unfolding continuous_def by (rule tendsto_vec_nth) lemma continuous_on_component: shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x $ i)" unfolding continuous_on_def by (fast intro: tendsto_vec_nth) lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}" by (simp add: Collect_all_eq closed_INT closed_Collect_le) lemma bounded_component_cart: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)" unfolding bounded_def apply clarify apply (rule_tac x="x $ i" in exI) apply (rule_tac x="e" in exI) apply clarify apply (rule order_trans [OF dist_vec_nth_le], simp) done lemma compact_lemma_cart: fixes f :: "nat \<Rightarrow> 'a::heine_borel ^ 'n" assumes "bounded s" and "\<forall>n. f n \<in> s" shows "\<forall>d. \<exists>l r. subseq r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)" proof fix d::"'n set" have "finite d" by simp thus "\<exists>l::'a ^ 'n. \<exists>r. subseq r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)" proof(induct d) case empty thus ?case unfolding subseq_def by auto next case (insert k d) have s': "bounded ((\<lambda>x. x $ k) ` s)" using `bounded s` by (rule bounded_component_cart) obtain l1::"'a^'n" and r1 where r1:"subseq r1" and lr1:"\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially" using insert(3) by auto have f': "\<forall>n. f (r1 n) $ k \<in> (\<lambda>x. x $ k) ` s" using `\<forall>n. f n \<in> s` by simp obtain l2 r2 where r2:"subseq r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) $ k) ---> l2) sequentially" using bounded_imp_convergent_subsequence[OF s' f'] unfolding o_def by auto def r \<equiv> "r1 \<circ> r2" have r:"subseq r" using r1 and r2 unfolding r_def o_def subseq_def by auto moreover def l \<equiv> "(\<chi> i. if i = k then l2 else l1$i)::'a^'n" { fix e::real assume "e>0" from lr1 `e>0` have N1:"eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially" by blast from lr2 `e>0` have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) $ k) l2 < e) sequentially" by (rule tendstoD) from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) $ i) (l1 $ i) < e) sequentially" by (rule eventually_subseq) have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) $ i) (l $ i) < e) sequentially" using N1' N2 by (rule eventually_elim2, simp add: l_def r_def) } ultimately show ?case by auto qed qed instance vec :: (heine_borel, finite) heine_borel proof fix s :: "('a ^ 'b) set" and f :: "nat \<Rightarrow> 'a ^ 'b" assume s: "bounded s" and f: "\<forall>n. f n \<in> s" then obtain l r where r: "subseq r" and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $ i) (l $ i) < e) sequentially" using compact_lemma_cart [OF s f] by blast let ?d = "UNIV::'b set" { fix e::real assume "e>0" hence "0 < e / (real_of_nat (card ?d))" using zero_less_card_finite using divide_pos_pos[of e, of "real_of_nat (card ?d)"] by auto with l have "eventually (\<lambda>n. \<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))) sequentially" by simp moreover { fix n assume n: "\<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))" have "dist (f (r n)) l \<le> (\<Sum>i\<in>?d. dist (f (r n) $ i) (l $ i))" unfolding dist_vec_def using zero_le_dist by (rule setL2_le_setsum) also have "\<dots> < (\<Sum>i\<in>?d. e / (real_of_nat (card ?d)))" by (rule setsum_strict_mono) (simp_all add: n) finally have "dist (f (r n)) l < e" by simp } ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially" by (rule eventually_elim1) } hence *:"((f \<circ> r) ---> l) sequentially" unfolding o_def tendsto_iff by simp with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" by auto qed lemma interval_cart: fixes a :: "'a::ord^'n" shows "{a <..< b} = {x::'a^'n. \<forall>i. a$i < x$i \<and> x$i < b$i}" and "{a .. b} = {x::'a^'n. \<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i}" by (auto simp add: set_eq_iff less_vec_def less_eq_vec_def) lemma mem_interval_cart: fixes a :: "'a::ord^'n" shows "x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i. a$i < x$i \<and> x$i < b$i)" "x \<in> {a .. b} \<longleftrightarrow> (\<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i)" using interval_cart[of a b] by(auto simp add: set_eq_iff less_vec_def less_eq_vec_def) lemma interval_eq_empty_cart: fixes a :: "real^'n" shows "({a <..< b} = {} \<longleftrightarrow> (\<exists>i. b$i \<le> a$i))" (is ?th1) and "({a .. b} = {} \<longleftrightarrow> (\<exists>i. b$i < a$i))" (is ?th2) proof- { fix i x assume as:"b$i \<le> a$i" and x:"x\<in>{a <..< b}" hence "a $ i < x $ i \<and> x $ i < b $ i" unfolding mem_interval_cart by auto hence "a$i < b$i" by auto hence False using as by auto } moreover { assume as:"\<forall>i. \<not> (b$i \<le> a$i)" let ?x = "(1/2) *\<^sub>R (a + b)" { fix i have "a$i < b$i" using as[THEN spec[where x=i]] by auto hence "a$i < ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i < b$i" unfolding vector_smult_component and vector_add_component by auto } hence "{a <..< b} \<noteq> {}" using mem_interval_cart(1)[of "?x" a b] by auto } ultimately show ?th1 by blast { fix i x assume as:"b$i < a$i" and x:"x\<in>{a .. b}" hence "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" unfolding mem_interval_cart by auto hence "a$i \<le> b$i" by auto hence False using as by auto } moreover { assume as:"\<forall>i. \<not> (b$i < a$i)" let ?x = "(1/2) *\<^sub>R (a + b)" { fix i have "a$i \<le> b$i" using as[THEN spec[where x=i]] by auto hence "a$i \<le> ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i \<le> b$i" unfolding vector_smult_component and vector_add_component by auto } hence "{a .. b} \<noteq> {}" using mem_interval_cart(2)[of "?x" a b] by auto } ultimately show ?th2 by blast qed lemma interval_ne_empty_cart: fixes a :: "real^'n" shows "{a .. b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i \<le> b$i)" and "{a <..< b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i < b$i)" unfolding interval_eq_empty_cart[of a b] by (auto simp add: not_less not_le) (* BH: Why doesn't just "auto" work here? *) lemma subset_interval_imp_cart: fixes a :: "real^'n" shows "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c .. d} \<subseteq> {a .. b}" and "(\<forall>i. a$i < c$i \<and> d$i < b$i) \<Longrightarrow> {c .. d} \<subseteq> {a<..<b}" and "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a .. b}" and "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a<..<b}" unfolding subset_eq[unfolded Ball_def] unfolding mem_interval_cart by (auto intro: order_trans less_le_trans le_less_trans less_imp_le) (* BH: Why doesn't just "auto" work here? *) lemma interval_sing: fixes a :: "'a::linorder^'n" shows "{a .. a} = {a} \<and> {a<..<a} = {}" apply(auto simp add: set_eq_iff less_vec_def less_eq_vec_def vec_eq_iff) apply (simp add: order_eq_iff) apply (auto simp add: not_less less_imp_le) done lemma interval_open_subset_closed_cart: fixes a :: "'a::preorder^'n" shows "{a<..<b} \<subseteq> {a .. b}" proof(simp add: subset_eq, rule) fix x assume x:"x \<in>{a<..<b}" { fix i have "a $ i \<le> x $ i" using x order_less_imp_le[of "a$i" "x$i"] by(simp add: set_eq_iff less_vec_def less_eq_vec_def vec_eq_iff) } moreover { fix i have "x $ i \<le> b $ i" using x order_less_imp_le[of "x$i" "b$i"] by(simp add: set_eq_iff less_vec_def less_eq_vec_def vec_eq_iff) } ultimately show "a \<le> x \<and> x \<le> b" by(simp add: set_eq_iff less_vec_def less_eq_vec_def vec_eq_iff) qed lemma subset_interval_cart: fixes a :: "real^'n" shows "{c .. d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th1) and "{c .. d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i < c$i \<and> d$i < b$i)" (is ?th2) and "{c<..<d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th3) and "{c<..<d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th4) using subset_interval[of c d a b] by (simp_all add: cart_simps real_euclidean_nth) lemma disjoint_interval_cart: fixes a::"real^'n" shows "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i < c$i \<or> b$i < c$i \<or> d$i < a$i))" (is ?th1) and "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th2) and "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i < c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th3) and "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th4) using disjoint_interval[of a b c d] by (simp_all add: cart_simps real_euclidean_nth) lemma inter_interval_cart: fixes a :: "'a::linorder^'n" shows "{a .. b} \<inter> {c .. d} = {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}" unfolding set_eq_iff and Int_iff and mem_interval_cart by auto lemma closed_interval_left_cart: fixes b::"real^'n" shows "closed {x::real^'n. \<forall>i. x$i \<le> b$i}" by (simp add: Collect_all_eq closed_INT closed_Collect_le) lemma closed_interval_right_cart: fixes a::"real^'n" shows "closed {x::real^'n. \<forall>i. a$i \<le> x$i}" by (simp add: Collect_all_eq closed_INT closed_Collect_le) lemma is_interval_cart:"is_interval (s::(real^'n) set) \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i. ((a$i \<le> x$i \<and> x$i \<le> b$i) \<or> (b$i \<le> x$i \<and> x$i \<le> a$i))) \<longrightarrow> x \<in> s)" unfolding is_interval_def Ball_def by (simp add: cart_simps real_euclidean_nth) lemma closed_halfspace_component_le_cart: shows "closed {x::real^'n. x$i \<le> a}" by (simp add: closed_Collect_le) lemma closed_halfspace_component_ge_cart: shows "closed {x::real^'n. x$i \<ge> a}" by (simp add: closed_Collect_le) lemma open_halfspace_component_lt_cart: shows "open {x::real^'n. x$i < a}" by (simp add: open_Collect_less) lemma open_halfspace_component_gt_cart: shows "open {x::real^'n. x$i > a}" by (simp add: open_Collect_less) lemma Lim_component_le_cart: fixes f :: "'a \<Rightarrow> real^'n" assumes "(f ---> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. f(x)$i \<le> b) net" shows "l$i \<le> b" proof- { fix x have "x \<in> {x::real^'n. inner (cart_basis i) x \<le> b} \<longleftrightarrow> x$i \<le> b" unfolding inner_basis by auto } note * = this show ?thesis using Lim_in_closed_set[of "{x. inner (cart_basis i) x \<le> b}" f net l] unfolding * using closed_halfspace_le[of "(cart_basis i)::real^'n" b] and assms(1,2,3) by auto qed lemma Lim_component_ge_cart: fixes f :: "'a \<Rightarrow> real^'n" assumes "(f ---> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. b \<le> (f x)$i) net" shows "b \<le> l$i" proof- { fix x have "x \<in> {x::real^'n. inner (cart_basis i) x \<ge> b} \<longleftrightarrow> x$i \<ge> b" unfolding inner_basis by auto } note * = this show ?thesis using Lim_in_closed_set[of "{x. inner (cart_basis i) x \<ge> b}" f net l] unfolding * using closed_halfspace_ge[of b "(cart_basis i)::real^'n"] and assms(1,2,3) by auto qed lemma Lim_component_eq_cart: fixes f :: "'a \<Rightarrow> real^'n" assumes net:"(f ---> l) net" "~(trivial_limit net)" and ev:"eventually (\<lambda>x. f(x)$i = b) net" shows "l$i = b" using ev[unfolded order_eq_iff eventually_conj_iff] using Lim_component_ge_cart[OF net, of b i] and Lim_component_le_cart[OF net, of i b] by auto lemma connected_ivt_component_cart: fixes x::"real^'n" shows "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s. z$k = a)" using connected_ivt_hyperplane[of s x y "(cart_basis k)::real^'n" a] by (auto simp add: inner_basis) lemma subspace_substandard_cart: "subspace {x::real^_. (\<forall>i. P i \<longrightarrow> x$i = 0)}" unfolding subspace_def by auto lemma closed_substandard_cart: "closed {x::'a::real_normed_vector ^ 'n. \<forall>i. P i \<longrightarrow> x$i = 0}" proof- { fix i::'n have "closed {x::'a ^ 'n. P i \<longrightarrow> x$i = 0}" by (cases "P i", simp_all add: closed_Collect_eq) } thus ?thesis unfolding Collect_all_eq by (simp add: closed_INT) qed lemma dim_substandard_cart: shows "dim {x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0} = card d" (is "dim ?A = _") proof- have *:"{x. \<forall>i<DIM((real, 'n) vec). i \<notin> \<pi>' ` d \<longrightarrow> x $$ i = 0} = {x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0}"apply safe apply(erule_tac x="\<pi>' i" in allE) defer apply(erule_tac x="\<pi> i" in allE) unfolding image_iff real_euclidean_nth[symmetric] by (auto simp: pi'_inj[THEN inj_eq]) have " \<pi>' ` d \<subseteq> {..<DIM((real, 'n) vec)}" using pi'_range[where 'n='n] by auto thus ?thesis using dim_substandard[of "\<pi>' ` d", where 'a="real^'n"] unfolding * using card_image[of "\<pi>'" d] using pi'_inj unfolding inj_on_def by auto qed lemma affinity_inverses: assumes m0: "m \<noteq> (0::'a::field)" shows "(\<lambda>x. m *s x + c) o (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id" "(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) o (\<lambda>x. m *s x + c) = id" using m0 apply (auto simp add: fun_eq_iff vector_add_ldistrib) by (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric]) lemma vector_affinity_eq: assumes m0: "(m::'a::field) \<noteq> 0" shows "m *s x + c = y \<longleftrightarrow> x = inverse m *s y + -(inverse m *s c)" proof assume h: "m *s x + c = y" hence "m *s x = y - c" by (simp add: field_simps) hence "inverse m *s (m *s x) = inverse m *s (y - c)" by simp then show "x = inverse m *s y + - (inverse m *s c)" using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib) next assume h: "x = inverse m *s y + - (inverse m *s c)" show "m *s x + c = y" unfolding h diff_minus[symmetric] using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib) qed lemma vector_eq_affinity: "(m::'a::field) \<noteq> 0 ==> (y = m *s x + c \<longleftrightarrow> inverse(m) *s y + -(inverse(m) *s c) = x)" using vector_affinity_eq[where m=m and x=x and y=y and c=c] by metis lemma const_vector_cart:"((\<chi> i. d)::real^'n) = (\<chi>\<chi> i. d)" apply(subst euclidean_eq) proof safe case goal1 hence *:"(basis i::real^'n) = cart_basis (\<pi> i)" unfolding basis_real_n[THEN sym] by auto have "((\<chi> i. d)::real^'n) $$ i = d" unfolding euclidean_component_def * unfolding dot_basis by auto thus ?case using goal1 by auto qed subsection "Convex Euclidean Space" lemma Cart_1:"(1::real^'n) = (\<chi>\<chi> i. 1)" apply(subst euclidean_eq) proof safe case goal1 thus ?case using nth_conv_component[THEN sym,where i1="\<pi> i" and x1="1::real^'n"] by auto qed declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp] declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp] lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component less_eq_vec_def vec_lambda_beta basis_component vector_uminus_component lemma convex_box_cart: assumes "\<And>i. convex {x. P i x}" shows "convex {x. \<forall>i. P i (x$i)}" using assms unfolding convex_def by auto lemma convex_positive_orthant_cart: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}" by (rule convex_box_cart) (simp add: atLeast_def[symmetric] convex_real_interval) lemma unit_interval_convex_hull_cart: "{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points") unfolding Cart_1 unit_interval_convex_hull[where 'a="real^'n"] apply(rule arg_cong[where f="\<lambda>x. convex hull x"]) apply(rule set_eqI) unfolding mem_Collect_eq apply safe apply(erule_tac x="\<pi>' i" in allE) unfolding nth_conv_component defer apply(erule_tac x="\<pi> i" in allE) by auto lemma cube_convex_hull_cart: assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof- from cube_convex_hull[OF assms, where 'a="real^'n" and x=x] guess s . note s=this show thesis apply(rule that[OF s(1)]) unfolding s(2)[THEN sym] const_vector_cart .. qed lemma std_simplex_cart: "(insert (0::real^'n) { cart_basis i | i. i\<in>UNIV}) = (insert 0 { basis i | i. i<DIM((real,'n) vec)})" apply(rule arg_cong[where f="\<lambda>s. (insert 0 s)"]) unfolding basis_real_n[THEN sym] apply safe apply(rule_tac x="\<pi>' i" in exI) defer apply(rule_tac x="\<pi> i" in exI) using pi'_range[where 'n='n] by auto subsection "Brouwer Fixpoint" lemma kuhn_labelling_lemma_cart: assumes "(\<forall>x::real^_. P x \<longrightarrow> P (f x))" "\<forall>x. P x \<longrightarrow> (\<forall>i. Q i \<longrightarrow> 0 \<le> x$i \<and> x$i \<le> 1)" shows "\<exists>l. (\<forall>x i. l x i \<le> (1::nat)) \<and> (\<forall>x i. P x \<and> Q i \<and> (x$i = 0) \<longrightarrow> (l x i = 0)) \<and> (\<forall>x i. P x \<and> Q i \<and> (x$i = 1) \<longrightarrow> (l x i = 1)) \<and> (\<forall>x i. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x$i \<le> f(x)$i) \<and> (\<forall>x i. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f(x)$i \<le> x$i)" proof- have and_forall_thm:"\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)" by auto have *:"\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> (x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x)" by auto show ?thesis unfolding and_forall_thm apply(subst choice_iff[THEN sym])+ proof(rule,rule) case goal1 let ?R = "\<lambda>y. (P x \<and> Q xa \<and> x $ xa = 0 \<longrightarrow> y = (0::nat)) \<and> (P x \<and> Q xa \<and> x $ xa = 1 \<longrightarrow> y = 1) \<and> (P x \<and> Q xa \<and> y = 0 \<longrightarrow> x $ xa \<le> f x $ xa) \<and> (P x \<and> Q xa \<and> y = 1 \<longrightarrow> f x $ xa \<le> x $ xa)" { assume "P x" "Q xa" hence "0 \<le> f x $ xa \<and> f x $ xa \<le> 1" using assms(2)[rule_format,of "f x" xa] apply(drule_tac assms(1)[rule_format]) by auto } hence "?R 0 \<or> ?R 1" by auto thus ?case by auto qed qed lemma interval_bij_cart:"interval_bij = (\<lambda> (a,b) (u,v) (x::real^'n). (\<chi> i. u$i + (x$i - a$i) / (b$i - a$i) * (v$i - u$i))::real^'n)" unfolding interval_bij_def apply(rule ext)+ apply safe unfolding vec_eq_iff vec_lambda_beta unfolding nth_conv_component apply rule apply(subst euclidean_lambda_beta) using pi'_range by auto lemma interval_bij_affine_cart: "interval_bij (a,b) (u,v) = (\<lambda>x. (\<chi> i. (v$i - u$i) / (b$i - a$i) * x$i) + (\<chi> i. u$i - (v$i - u$i) / (b$i - a$i) * a$i)::real^'n)" apply rule unfolding vec_eq_iff interval_bij_cart vector_component_simps by(auto simp add: field_simps add_divide_distrib[THEN sym]) subsection "Derivative" lemma has_derivative_vmul_component_cart: fixes c::"real^'a \<Rightarrow> real^'b" and v::"real^'c" assumes "(c has_derivative c') net" shows "((\<lambda>x. c(x)$k *\<^sub>R v) has_derivative (\<lambda>x. (c' x)$k *\<^sub>R v)) net" unfolding nth_conv_component by (intro has_derivative_intros assms) lemma differentiable_at_imp_differentiable_on: "(\<forall>x\<in>(s::(real^'n) set). f differentiable at x) \<Longrightarrow> f differentiable_on s" unfolding differentiable_on_def by(auto intro!: differentiable_at_withinI) definition "jacobian f net = matrix(frechet_derivative f net)" lemma jacobian_works: "(f::(real^'a) \<Rightarrow> (real^'b)) differentiable net \<longleftrightarrow> (f has_derivative (\<lambda>h. (jacobian f net) *v h)) net" apply rule unfolding jacobian_def apply(simp only: matrix_works[OF linear_frechet_derivative]) defer apply(rule differentiableI) apply assumption unfolding frechet_derivative_works by assumption subsection {* Component of the differential must be zero if it exists at a local *) (* maximum or minimum for that corresponding component. *} lemma differential_zero_maxmin_component: fixes f::"real^'a \<Rightarrow> real^'b" assumes "0 < e" "((\<forall>y \<in> ball x e. (f y)$k \<le> (f x)$k) \<or> (\<forall>y\<in>ball x e. (f x)$k \<le> (f y)$k))" "f differentiable (at x)" shows "jacobian f (at x) $ k = 0" (* FIXME: reuse proof of generic differential_zero_maxmin_component*) proof(rule ccontr) def D \<equiv> "jacobian f (at x)" assume "jacobian f (at x) $ k \<noteq> 0" then obtain j where j:"D$k$j \<noteq> 0" unfolding vec_eq_iff D_def by auto hence *:"abs (jacobian f (at x) $ k $ j) / 2 > 0" unfolding D_def by auto note as = assms(3)[unfolded jacobian_works has_derivative_at_alt] guess e' using as[THEN conjunct2,rule_format,OF *] .. note e' = this guess d using real_lbound_gt_zero[OF assms(1) e'[THEN conjunct1]] .. note d = this { fix c assume "abs c \<le> d" hence *:"norm (x + c *\<^sub>R cart_basis j - x) < e'" using norm_basis[of j] d by auto have "\<bar>(f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j)) $ k\<bar> \<le> norm (f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j))" by(rule component_le_norm_cart) also have "\<dots> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" using e'[THEN conjunct2,rule_format,OF *] and norm_basis[of j] unfolding D_def[symmetric] by auto finally have "\<bar>(f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j)) $ k\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" by simp hence "\<bar>f (x + c *\<^sub>R cart_basis j) $ k - f x $ k - c * D $ k $ j\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" unfolding vector_component_simps matrix_vector_mul_component unfolding smult_conv_scaleR[symmetric] unfolding inner_simps dot_basis smult_conv_scaleR by simp } note * = this have "x + d *\<^sub>R cart_basis j \<in> ball x e" "x - d *\<^sub>R cart_basis j \<in> ball x e" unfolding mem_ball dist_norm using norm_basis[of j] d by auto hence **:"((f (x - d *\<^sub>R cart_basis j))$k \<le> (f x)$k \<and> (f (x + d *\<^sub>R cart_basis j))$k \<le> (f x)$k) \<or> ((f (x - d *\<^sub>R cart_basis j))$k \<ge> (f x)$k \<and> (f (x + d *\<^sub>R cart_basis j))$k \<ge> (f x)$k)" using assms(2) by auto have ***:"\<And>y y1 y2 d dx::real. (y1\<le>y\<and>y2\<le>y) \<or> (y\<le>y1\<and>y\<le>y2) \<Longrightarrow> d < abs dx \<Longrightarrow> abs(y1 - y - - dx) \<le> d \<Longrightarrow> (abs (y2 - y - dx) \<le> d) \<Longrightarrow> False" by arith show False apply(rule ***[OF **, where dx="d * D $ k $ j" and d="\<bar>D $ k $ j\<bar> / 2 * \<bar>d\<bar>"]) using *[of "-d"] and *[of d] and d[THEN conjunct1] and j unfolding mult_minus_left unfolding abs_mult diff_minus_eq_add scaleR_minus_left unfolding algebra_simps by (auto intro: mult_pos_pos) qed subsection {* Lemmas for working on @{typ "real^1"} *} lemma forall_1[simp]: "(\<forall>i::1. P i) \<longleftrightarrow> P 1" by (metis num1_eq_iff) lemma ex_1[simp]: "(\<exists>x::1. P x) \<longleftrightarrow> P 1" by auto (metis num1_eq_iff) lemma exhaust_2: fixes x :: 2 shows "x = 1 \<or> x = 2" proof (induct x) case (of_int z) then have "0 <= z" and "z < 2" by simp_all then have "z = 0 | z = 1" by arith then show ?case by auto qed lemma forall_2: "(\<forall>i::2. P i) \<longleftrightarrow> P 1 \<and> P 2" by (metis exhaust_2) lemma exhaust_3: fixes x :: 3 shows "x = 1 \<or> x = 2 \<or> x = 3" proof (induct x) case (of_int z) then have "0 <= z" and "z < 3" by simp_all then have "z = 0 \<or> z = 1 \<or> z = 2" by arith then show ?case by auto qed lemma forall_3: "(\<forall>i::3. P i) \<longleftrightarrow> P 1 \<and> P 2 \<and> P 3" by (metis exhaust_3) lemma UNIV_1 [simp]: "UNIV = {1::1}" by (auto simp add: num1_eq_iff) lemma UNIV_2: "UNIV = {1::2, 2::2}" using exhaust_2 by auto lemma UNIV_3: "UNIV = {1::3, 2::3, 3::3}" using exhaust_3 by auto lemma setsum_1: "setsum f (UNIV::1 set) = f 1" unfolding UNIV_1 by simp lemma setsum_2: "setsum f (UNIV::2 set) = f 1 + f 2" unfolding UNIV_2 by simp lemma setsum_3: "setsum f (UNIV::3 set) = f 1 + f 2 + f 3" unfolding UNIV_3 by (simp add: add_ac) instantiation num1 :: cart_one begin instance proof show "CARD(1) = Suc 0" by auto qed end (* "lift" from 'a to 'a^1 and "drop" from 'a^1 to 'a -- FIXME: potential use of transfer *) abbreviation vec1:: "'a \<Rightarrow> 'a ^ 1" where "vec1 x \<equiv> vec x" abbreviation dest_vec1:: "'a ^1 \<Rightarrow> 'a" where "dest_vec1 x \<equiv> (x$1)" lemma vec1_dest_vec1[simp]: "vec1(dest_vec1 x) = x" by (simp add: vec_eq_iff) lemma forall_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (vec1 x))" by (metis vec1_dest_vec1(1)) lemma exists_vec1: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. P(vec1 x))" by (metis vec1_dest_vec1(1)) lemma dest_vec1_eq[simp]: "dest_vec1 x = dest_vec1 y \<longleftrightarrow> x = y" by (metis vec1_dest_vec1(1)) subsection{* The collapse of the general concepts to dimension one. *} lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))" by (simp add: vec_eq_iff) lemma forall_one: "(\<forall>(x::'a ^1). P x) \<longleftrightarrow> (\<forall>x. P(\<chi> i. x))" apply auto apply (erule_tac x= "x$1" in allE) apply (simp only: vector_one[symmetric]) done lemma norm_vector_1: "norm (x :: _^1) = norm (x$1)" by (simp add: norm_vec_def) lemma norm_real: "norm(x::real ^ 1) = abs(x$1)" by (simp add: norm_vector_1) lemma dist_real: "dist(x::real ^ 1) y = abs((x$1) - (y$1))" by (auto simp add: norm_real dist_norm) subsection{* Explicit vector construction from lists. *} definition "vector l = (\<chi> i. foldr (\<lambda>x f n. fun_upd (f (n+1)) n x) l (\<lambda>n x. 0) 1 i)" lemma vector_1: "(vector[x]) $1 = x" unfolding vector_def by simp lemma vector_2: "(vector[x,y]) $1 = x" "(vector[x,y] :: 'a^2)$2 = (y::'a::zero)" unfolding vector_def by simp_all lemma vector_3: "(vector [x,y,z] ::('a::zero)^3)$1 = x" "(vector [x,y,z] ::('a::zero)^3)$2 = y" "(vector [x,y,z] ::('a::zero)^3)$3 = z" unfolding vector_def by simp_all lemma forall_vector_1: "(\<forall>v::'a::zero^1. P v) \<longleftrightarrow> (\<forall>x. P(vector[x]))" apply auto apply (erule_tac x="v$1" in allE) apply (subgoal_tac "vector [v$1] = v") apply simp apply (vector vector_def) apply simp done lemma forall_vector_2: "(\<forall>v::'a::zero^2. P v) \<longleftrightarrow> (\<forall>x y. P(vector[x, y]))" apply auto apply (erule_tac x="v$1" in allE) apply (erule_tac x="v$2" in allE) apply (subgoal_tac "vector [v$1, v$2] = v") apply simp apply (vector vector_def) apply (simp add: forall_2) done lemma forall_vector_3: "(\<forall>v::'a::zero^3. P v) \<longleftrightarrow> (\<forall>x y z. P(vector[x, y, z]))" apply auto apply (erule_tac x="v$1" in allE) apply (erule_tac x="v$2" in allE) apply (erule_tac x="v$3" in allE) apply (subgoal_tac "vector [v$1, v$2, v$3] = v") apply simp apply (vector vector_def) apply (simp add: forall_3) done lemma range_vec1[simp]:"range vec1 = UNIV" apply(rule set_eqI,rule) unfolding image_iff defer apply(rule_tac x="dest_vec1 x" in bexI) by auto lemma dest_vec1_lambda: "dest_vec1(\<chi> i. x i) = x 1" by (simp) lemma dest_vec1_vec: "dest_vec1(vec x) = x" by (simp) lemma dest_vec1_sum: assumes fS: "finite S" shows "dest_vec1(setsum f S) = setsum (dest_vec1 o f) S" apply (induct rule: finite_induct[OF fS]) apply simp apply auto done lemma norm_vec1 [simp]: "norm(vec1 x) = abs(x)" by (simp add: vec_def norm_real) lemma dist_vec1: "dist(vec1 x) (vec1 y) = abs(x - y)" by (simp only: dist_real vec_component) lemma abs_dest_vec1: "norm x = \<bar>dest_vec1 x\<bar>" by (metis vec1_dest_vec1(1) norm_vec1) lemmas vec1_dest_vec1_simps = forall_vec1 vec_add[THEN sym] dist_vec1 vec_sub[THEN sym] vec1_dest_vec1 norm_vec1 vector_smult_component vec_inj[where 'b=1] vec_cmul[THEN sym] smult_conv_scaleR[THEN sym] o_def dist_real_def real_norm_def lemma bounded_linear_vec1:"bounded_linear (vec1::real\<Rightarrow>real^1)" unfolding bounded_linear_def additive_def bounded_linear_axioms_def unfolding smult_conv_scaleR[THEN sym] unfolding vec1_dest_vec1_simps apply(rule conjI) defer apply(rule conjI) defer apply(rule_tac x=1 in exI) by auto lemma linear_vmul_dest_vec1: fixes f:: "real^_ \<Rightarrow> real^1" shows "linear f \<Longrightarrow> linear (\<lambda>x. dest_vec1(f x) *s v)" unfolding smult_conv_scaleR by (rule linear_vmul_component) lemma linear_from_scalars: assumes lf: "linear (f::real^1 \<Rightarrow> real^_)" shows "f = (\<lambda>x. dest_vec1 x *s column 1 (matrix f))" unfolding smult_conv_scaleR apply (rule ext) apply (subst matrix_works[OF lf, symmetric]) apply (auto simp add: vec_eq_iff matrix_vector_mult_def column_def mult_commute) done lemma linear_to_scalars: assumes lf: "linear (f::real ^'n \<Rightarrow> real^1)" shows "f = (\<lambda>x. vec1(row 1 (matrix f) \<bullet> x))" apply (rule ext) apply (subst matrix_works[OF lf, symmetric]) apply (simp add: vec_eq_iff matrix_vector_mult_def row_def inner_vec_def mult_commute) done lemma dest_vec1_eq_0: "dest_vec1 x = 0 \<longleftrightarrow> x = 0" by (simp add: dest_vec1_eq[symmetric]) lemma setsum_scalars: assumes fS: "finite S" shows "setsum f S = vec1 (setsum (dest_vec1 o f) S)" unfolding vec_setsum[OF fS] by simp lemma dest_vec1_wlog_le: "(\<And>(x::'a::linorder ^ 1) y. P x y \<longleftrightarrow> P y x) \<Longrightarrow> (\<And>x y. dest_vec1 x <= dest_vec1 y ==> P x y) \<Longrightarrow> P x y" apply (cases "dest_vec1 x \<le> dest_vec1 y") apply simp apply (subgoal_tac "dest_vec1 y \<le> dest_vec1 x") apply (auto) done text{* Lifting and dropping *} lemma continuous_on_o_dest_vec1: fixes f::"real \<Rightarrow> 'a::real_normed_vector" assumes "continuous_on {a..b::real} f" shows "continuous_on {vec1 a..vec1 b} (f o dest_vec1)" using assms unfolding continuous_on_iff apply safe apply(erule_tac x="x$1" in ballE,erule_tac x=e in allE) apply safe apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real apply(erule_tac x="dest_vec1 x'" in ballE) by(auto simp add:less_eq_vec_def) lemma continuous_on_o_vec1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector" assumes "continuous_on {a..b} f" shows "continuous_on {dest_vec1 a..dest_vec1 b} (f o vec1)" using assms unfolding continuous_on_iff apply safe apply(erule_tac x="vec x" in ballE,erule_tac x=e in allE) apply safe apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real apply(erule_tac x="vec1 x'" in ballE) by(auto simp add:less_eq_vec_def) lemma continuous_on_vec1:"continuous_on A (vec1::real\<Rightarrow>real^1)" by(rule linear_continuous_on[OF bounded_linear_vec1]) lemma mem_interval_1: fixes x :: "real^1" shows "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)" "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)" by(simp_all add: vec_eq_iff less_vec_def less_eq_vec_def) lemma vec1_interval:fixes a::"real" shows "vec1 ` {a .. b} = {vec1 a .. vec1 b}" "vec1 ` {a<..<b} = {vec1 a<..<vec1 b}" apply(rule_tac[!] set_eqI) unfolding image_iff less_vec_def unfolding mem_interval_cart unfolding forall_1 unfolding vec1_dest_vec1_simps apply rule defer apply(rule_tac x="dest_vec1 x" in bexI) prefer 3 apply rule defer apply(rule_tac x="dest_vec1 x" in bexI) by auto (* Some special cases for intervals in R^1. *) lemma interval_cases_1: fixes x :: "real^1" shows "x \<in> {a .. b} ==> x \<in> {a<..<b} \<or> (x = a) \<or> (x = b)" unfolding vec_eq_iff less_vec_def less_eq_vec_def mem_interval_cart by(auto simp del:dest_vec1_eq) lemma in_interval_1: fixes x :: "real^1" shows "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b) \<and> (x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)" unfolding vec_eq_iff less_vec_def less_eq_vec_def mem_interval_cart by(auto simp del:dest_vec1_eq) lemma interval_eq_empty_1: fixes a :: "real^1" shows "{a .. b} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a" "{a<..<b} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a" unfolding interval_eq_empty_cart and ex_1 by auto lemma subset_interval_1: fixes a :: "real^1" shows "({a .. b} \<subseteq> {c .. d} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)" "({a .. b} \<subseteq> {c<..<d} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 c < dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b < dest_vec1 d)" "({a<..<b} \<subseteq> {c .. d} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)" "({a<..<b} \<subseteq> {c<..<d} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)" unfolding subset_interval_cart[of a b c d] unfolding forall_1 by auto lemma eq_interval_1: fixes a :: "real^1" shows "{a .. b} = {c .. d} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<and> dest_vec1 d < dest_vec1 c \<or> dest_vec1 a = dest_vec1 c \<and> dest_vec1 b = dest_vec1 d" unfolding set_eq_subset[of "{a .. b}" "{c .. d}"] unfolding subset_interval_1(1)[of a b c d] unfolding subset_interval_1(1)[of c d a b] by auto lemma disjoint_interval_1: fixes a :: "real^1" shows "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d < dest_vec1 c \<or> dest_vec1 b < dest_vec1 c \<or> dest_vec1 d < dest_vec1 a" "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c \<or> dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a" "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d < dest_vec1 c \<or> dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a" "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c \<or> dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a" unfolding disjoint_interval_cart and ex_1 by auto lemma open_closed_interval_1: fixes a :: "real^1" shows "{a<..<b} = {a .. b} - {a, b}" unfolding set_eq_iff apply simp unfolding less_vec_def and less_eq_vec_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq) lemma closed_open_interval_1: "dest_vec1 (a::real^1) \<le> dest_vec1 b ==> {a .. b} = {a<..<b} \<union> {a,b}" unfolding set_eq_iff apply simp unfolding less_vec_def and less_eq_vec_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq) lemma Lim_drop_le: fixes f :: "'a \<Rightarrow> real^1" shows "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. dest_vec1 (f x) \<le> b) net ==> dest_vec1 l \<le> b" using Lim_component_le_cart[of f l net 1 b] by auto lemma Lim_drop_ge: fixes f :: "'a \<Rightarrow> real^1" shows "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. b \<le> dest_vec1 (f x)) net ==> b \<le> dest_vec1 l" using Lim_component_ge_cart[of f l net b 1] by auto text{* Also more convenient formulations of monotone convergence. *} lemma bounded_increasing_convergent: fixes s::"nat \<Rightarrow> real^1" assumes "bounded {s n| n::nat. True}" "\<forall>n. dest_vec1(s n) \<le> dest_vec1(s(Suc n))" shows "\<exists>l. (s ---> l) sequentially" proof- obtain a where a:"\<forall>n. \<bar>dest_vec1 (s n)\<bar> \<le> a" using assms(1)[unfolded bounded_iff abs_dest_vec1] by auto { fix m::nat have "\<And> n. n\<ge>m \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)" apply(induct_tac n) apply simp using assms(2) apply(erule_tac x="na" in allE) by(auto simp add: not_less_eq_eq) } hence "\<forall>m n. m \<le> n \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)" by auto then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>dest_vec1 (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] unfolding monoseq_def by auto thus ?thesis unfolding LIMSEQ_def apply(rule_tac x="vec1 l" in exI) unfolding dist_norm unfolding abs_dest_vec1 by auto qed lemma dest_vec1_simps[simp]: fixes a::"real^1" shows "a$1 = 0 \<longleftrightarrow> a = 0" (*"a \<le> 1 \<longleftrightarrow> dest_vec1 a \<le> 1" "0 \<le> a \<longleftrightarrow> 0 \<le> dest_vec1 a"*) "a \<le> b \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 b" "dest_vec1 (1::real^1) = 1" by(auto simp add: less_eq_vec_def vec_eq_iff) lemma dest_vec1_inverval: "dest_vec1 ` {a .. b} = {dest_vec1 a .. dest_vec1 b}" "dest_vec1 ` {a<.. b} = {dest_vec1 a<.. dest_vec1 b}" "dest_vec1 ` {a ..<b} = {dest_vec1 a ..<dest_vec1 b}" "dest_vec1 ` {a<..<b} = {dest_vec1 a<..<dest_vec1 b}" apply(rule_tac [!] equalityI) unfolding subset_eq Ball_def Bex_def mem_interval_1 image_iff apply(rule_tac [!] allI)apply(rule_tac [!] impI) apply(rule_tac[2] x="vec1 x" in exI)apply(rule_tac[4] x="vec1 x" in exI) apply(rule_tac[6] x="vec1 x" in exI)apply(rule_tac[8] x="vec1 x" in exI) by (auto simp add: less_vec_def less_eq_vec_def) lemma dest_vec1_setsum: assumes "finite S" shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S" using dest_vec1_sum[OF assms] by auto lemma open_dest_vec1_vimage: "open S \<Longrightarrow> open (dest_vec1 -` S)" unfolding open_vec_def forall_1 by auto lemma tendsto_dest_vec1 [tendsto_intros]: "(f ---> l) net \<Longrightarrow> ((\<lambda>x. dest_vec1 (f x)) ---> dest_vec1 l) net" by(rule tendsto_vec_nth) lemma continuous_dest_vec1: "continuous net f \<Longrightarrow> continuous net (\<lambda>x. dest_vec1 (f x))" unfolding continuous_def by (rule tendsto_dest_vec1) lemma forall_dest_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P(dest_vec1 x))" apply safe defer apply(erule_tac x="vec1 x" in allE) by auto lemma forall_of_dest_vec1: "(\<forall>v. P (\<lambda>x. dest_vec1 (v x))) \<longleftrightarrow> (\<forall>x. P x)" apply rule apply rule apply(erule_tac x="(vec1 \<circ> x)" in allE) unfolding o_def vec1_dest_vec1 by auto lemma forall_of_dest_vec1': "(\<forall>v. P (dest_vec1 v)) \<longleftrightarrow> (\<forall>x. P x)" apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto lemma dist_vec1_0[simp]: "dist(vec1 (x::real)) 0 = norm x" unfolding dist_norm by auto lemma bounded_linear_vec1_dest_vec1: fixes f::"real \<Rightarrow> real" shows "linear (vec1 \<circ> f \<circ> dest_vec1) = bounded_linear f" (is "?l = ?r") proof- { assume ?l guess K using linear_bounded[OF `?l`] .. hence "\<exists>K. \<forall>x. \<bar>f x\<bar> \<le> \<bar>x\<bar> * K" apply(rule_tac x=K in exI) unfolding vec1_dest_vec1_simps by (auto simp add:field_simps) } thus ?thesis unfolding linear_def bounded_linear_def additive_def bounded_linear_axioms_def o_def unfolding vec1_dest_vec1_simps by auto qed lemma vec1_le[simp]:fixes a::real shows "vec1 a \<le> vec1 b \<longleftrightarrow> a \<le> b" unfolding less_eq_vec_def by auto lemma vec1_less[simp]:fixes a::real shows "vec1 a < vec1 b \<longleftrightarrow> a < b" unfolding less_vec_def by auto subsection {* Derivatives on real = Derivatives on @{typ "real^1"} *} lemma has_derivative_within_vec1_dest_vec1: fixes f::"real\<Rightarrow>real" shows "((vec1 \<circ> f \<circ> dest_vec1) has_derivative (vec1 \<circ> f' \<circ> dest_vec1)) (at (vec1 x) within vec1 ` s) = (f has_derivative f') (at x within s)" unfolding has_derivative_within unfolding bounded_linear_vec1_dest_vec1[unfolded linear_conv_bounded_linear] unfolding o_def Lim_within Ball_def unfolding forall_vec1 unfolding vec1_dest_vec1_simps dist_vec1_0 image_iff by auto lemma has_derivative_at_vec1_dest_vec1: fixes f::"real\<Rightarrow>real" shows "((vec1 \<circ> f \<circ> dest_vec1) has_derivative (vec1 \<circ> f' \<circ> dest_vec1)) (at (vec1 x)) = (f has_derivative f') (at x)" using has_derivative_within_vec1_dest_vec1[where s=UNIV, unfolded range_vec1 within_UNIV] by auto lemma bounded_linear_vec1': fixes f::"'a::real_normed_vector\<Rightarrow>real" shows "bounded_linear f = bounded_linear (vec1 \<circ> f)" unfolding bounded_linear_def additive_def bounded_linear_axioms_def o_def unfolding vec1_dest_vec1_simps by auto lemma bounded_linear_dest_vec1: fixes f::"real\<Rightarrow>'a::real_normed_vector" shows "bounded_linear f = bounded_linear (f \<circ> dest_vec1)" unfolding bounded_linear_def additive_def bounded_linear_axioms_def o_def unfolding vec1_dest_vec1_simps by auto lemma has_derivative_at_vec1: fixes f::"'a::real_normed_vector\<Rightarrow>real" shows "(f has_derivative f') (at x) = ((vec1 \<circ> f) has_derivative (vec1 \<circ> f')) (at x)" unfolding has_derivative_at unfolding bounded_linear_vec1'[unfolded linear_conv_bounded_linear] unfolding o_def Lim_at unfolding vec1_dest_vec1_simps dist_vec1_0 by auto lemma has_derivative_within_dest_vec1:fixes f::"real\<Rightarrow>'a::real_normed_vector" shows "((f \<circ> dest_vec1) has_derivative (f' \<circ> dest_vec1)) (at (vec1 x) within vec1 ` s) = (f has_derivative f') (at x within s)" unfolding has_derivative_within bounded_linear_dest_vec1 unfolding o_def Lim_within Ball_def unfolding vec1_dest_vec1_simps dist_vec1_0 image_iff by auto lemma has_derivative_at_dest_vec1:fixes f::"real\<Rightarrow>'a::real_normed_vector" shows "((f \<circ> dest_vec1) has_derivative (f' \<circ> dest_vec1)) (at (vec1 x)) = (f has_derivative f') (at x)" using has_derivative_within_dest_vec1[where s=UNIV] by simp subsection {* In particular if we have a mapping into @{typ "real^1"}. *} lemma onorm_vec1: fixes f::"real \<Rightarrow> real" shows "onorm (\<lambda>x. vec1 (f (dest_vec1 x))) = onorm f" proof- have "\<forall>x::real^1. norm x = 1 \<longleftrightarrow> x\<in>{vec1 -1, vec1 (1::real)}" unfolding forall_vec1 by(auto simp add:vec_eq_iff) hence 1:"{x. norm x = 1} = {vec1 -1, vec1 (1::real)}" by auto have 2:"{norm (vec1 (f (dest_vec1 x))) |x. norm x = 1} = (\<lambda>x. norm (vec1 (f (dest_vec1 x)))) ` {x. norm x=1}" by auto have "\<forall>x::real. norm x = 1 \<longleftrightarrow> x\<in>{-1, 1}" by auto hence 3:"{x. norm x = 1} = {-1, (1::real)}" by auto have 4:"{norm (f x) |x. norm x = 1} = (\<lambda>x. norm (f x)) ` {x. norm x=1}" by auto show ?thesis unfolding onorm_def 1 2 3 4 by(simp add:Sup_finite_Max) qed lemma convex_vec1:"convex (vec1 ` s) = convex (s::real set)" unfolding convex_def Ball_def forall_vec1 unfolding vec1_dest_vec1_simps image_iff by auto lemma bounded_linear_component_cart[intro]: "bounded_linear (\<lambda>x::real^'n. x $ k)" apply(rule bounded_linearI[where K=1]) using component_le_norm_cart[of _ k] unfolding real_norm_def by auto lemma bounded_vec1[intro]: "bounded s \<Longrightarrow> bounded (vec1 ` (s::real set))" unfolding bounded_def apply safe apply(rule_tac x="vec1 x" in exI,rule_tac x=e in exI) by(auto simp add: dist_real dist_real_def) (*lemma content_closed_interval_cases_cart: "content {a..b::real^'n} = (if {a..b} = {} then 0 else setprod (\<lambda>i. b$i - a$i) UNIV)" proof(cases "{a..b} = {}") case True thus ?thesis unfolding content_def by auto next case Falsethus ?thesis unfolding content_def unfolding if_not_P[OF False] proof(cases "\<forall>i. a $ i \<le> b $ i") case False thus ?thesis unfolding content_def using t by auto next case True note interval_eq_empty apply auto sorry*) lemma integral_component_eq_cart[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real^'m" assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $ k) = integral s f $ k" using integral_linear[OF assms(1) bounded_linear_component_cart,unfolded o_def] . lemma interval_split_cart: "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}" "{a..b} \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}" apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval_cart mem_Collect_eq unfolding vec_lambda_beta by auto (*lemma content_split_cart: "content {a..b::real^'n} = content({a..b} \<inter> {x. x$k \<le> c}) + content({a..b} \<inter> {x. x$k >= c})" proof- note simps = interval_split_cart content_closed_interval_cases_cart vec_lambda_beta less_eq_vec_def { presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps by auto } have *:"UNIV = insert k (UNIV - {k})" "\<And>x. finite (UNIV-{x::'n})" "\<And>x. x\<notin>UNIV-{x}" by auto have *:"\<And>X Y Z. (\<Prod>i\<in>UNIV. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>UNIV-{k}. Z i (Y i))" "(\<Prod>i\<in>UNIV. b$i - a$i) = (\<Prod>i\<in>UNIV-{k}. b$i - a$i) * (b$k - a$k)" apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto assume as:"a\<le>b" moreover have "\<And>x. min (b $ k) c = max (a $ k) c \<Longrightarrow> x* (b$k - a$k) = x*(max (a $ k) c - a $ k) + x*(b $ k - max (a $ k) c)" by (auto simp add:field_simps) moreover have "\<not> a $ k \<le> c \<Longrightarrow> \<not> c \<le> b $ k \<Longrightarrow> False" unfolding not_le using as[unfolded less_eq_vec_def,rule_format,of k] by auto ultimately show ?thesis unfolding simps unfolding *(1)[of "\<lambda>i x. b$i - x"] *(1)[of "\<lambda>i x. x - a$i"] *(2) by(auto) qed*) lemma has_integral_vec1: assumes "(f has_integral k) {a..b}" shows "((\<lambda>x. vec1 (f x)) has_integral (vec1 k)) {a..b}" proof- have *:"\<And>p. (\<Sum>(x, k)\<in>p. content k *\<^sub>R vec1 (f x)) - vec1 k = vec1 ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k)" unfolding vec_sub vec_eq_iff by(auto simp add: split_beta) show ?thesis using assms unfolding has_integral apply safe apply(erule_tac x=e in allE,safe) apply(rule_tac x=d in exI,safe) apply(erule_tac x=p in allE,safe) unfolding * norm_vector_1 by auto qed end