| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45051 | c478d1876371 |
| child 47761 | dfe747e72fa8 |
| permissions | -rw-r--r-- |
(* Title: HOL/Multivariate_Analysis/Extended_Real_Limits.thy Author: Johannes Hölzl, TU München Author: Robert Himmelmann, TU München Author: Armin Heller, TU München Author: Bogdan Grechuk, University of Edinburgh *) header {* Limits on the Extended real number line *} theory Extended_Real_Limits imports Topology_Euclidean_Space "~~/src/HOL/Library/Extended_Real" begin lemma continuous_on_ereal[intro, simp]: "continuous_on A ereal" unfolding continuous_on_topological open_ereal_def by auto lemma continuous_at_ereal[intro, simp]: "continuous (at x) ereal" using continuous_on_eq_continuous_at[of UNIV] by auto lemma continuous_within_ereal[intro, simp]: "x \<in> A \<Longrightarrow> continuous (at x within A) ereal" using continuous_on_eq_continuous_within[of A] by auto lemma ereal_open_uminus: fixes S :: "ereal set" assumes "open S" shows "open (uminus ` S)" unfolding open_ereal_def proof (intro conjI impI) obtain x y where S: "open (ereal -` S)" "\<infinity> \<in> S \<Longrightarrow> {ereal x<..} \<subseteq> S" "-\<infinity> \<in> S \<Longrightarrow> {..< ereal y} \<subseteq> S" using `open S` unfolding open_ereal_def by auto have "ereal -` uminus ` S = uminus ` (ereal -` S)" proof safe fix x y assume "ereal x = - y" "y \<in> S" then show "x \<in> uminus ` ereal -` S" by (cases y) auto next fix x assume "ereal x \<in> S" then show "- x \<in> ereal -` uminus ` S" by (auto intro: image_eqI[of _ _ "ereal x"]) qed then show "open (ereal -` uminus ` S)" using S by (auto intro: open_negations) { assume "\<infinity> \<in> uminus ` S" then have "-\<infinity> \<in> S" by (metis image_iff ereal_uminus_uminus) then have "uminus ` {..<ereal y} \<subseteq> uminus ` S" using S by (intro image_mono) auto then show "\<exists>x. {ereal x<..} \<subseteq> uminus ` S" using ereal_uminus_lessThan by auto } { assume "-\<infinity> \<in> uminus ` S" then have "\<infinity> : S" by (metis image_iff ereal_uminus_uminus) then have "uminus ` {ereal x<..} <= uminus ` S" using S by (intro image_mono) auto then show "\<exists>y. {..<ereal y} <= uminus ` S" using ereal_uminus_greaterThan by auto } qed lemma ereal_uminus_complement: fixes S :: "ereal set" shows "uminus ` (- S) = - uminus ` S" by (auto intro!: bij_image_Compl_eq surjI[of _ uminus] simp: bij_betw_def) lemma ereal_closed_uminus: fixes S :: "ereal set" assumes "closed S" shows "closed (uminus ` S)" using assms unfolding closed_def using ereal_open_uminus[of "- S"] ereal_uminus_complement by auto instance ereal :: perfect_space proof (default, rule) fix a :: ereal assume a: "open {a}" show False proof (cases a) case MInf then obtain y where "{..<ereal y} <= {a}" using a open_MInfty2[of "{a}"] by auto hence "ereal(y - 1):{a}" apply (subst subsetD[of "{..<ereal y}"]) by auto then show False using `a=(-\<infinity>)` by auto next case PInf then obtain y where "{ereal y<..} <= {a}" using a open_PInfty2[of "{a}"] by auto hence "ereal(y+1):{a}" apply (subst subsetD[of "{ereal y<..}"]) by auto then show False using `a=\<infinity>` by auto next case (real r) then have fin: "\<bar>a\<bar> \<noteq> \<infinity>" by simp from ereal_open_cont_interval[OF a singletonI this] guess e . note e = this then obtain b where b_def: "a<b & b<a+e" using fin ereal_between ereal_dense[of a "a+e"] by auto then have "b: {a-e <..< a+e}" using fin ereal_between[of a e] e by auto then show False using b_def e by auto qed qed lemma ereal_closed_contains_Inf: fixes S :: "ereal set" assumes "closed S" "S ~= {}" shows "Inf S : S" proof(rule ccontr) assume "Inf S \<notin> S" hence a: "open (-S)" "Inf S:(- S)" using assms by auto show False proof (cases "Inf S") case MInf hence "(-\<infinity>) : - S" using a by auto then obtain y where "{..<ereal y} <= (-S)" using a open_MInfty2[of "- S"] by auto hence "ereal y <= Inf S" by (metis Compl_anti_mono Compl_lessThan atLeast_iff complete_lattice_class.Inf_greatest double_complement set_rev_mp) then show False using MInf by auto next case PInf then have "S={\<infinity>}" by (metis Inf_eq_PInfty assms(2)) then show False using `Inf S ~: S` by (simp add: top_ereal_def) next case (real r) then have fin: "\<bar>Inf S\<bar> \<noteq> \<infinity>" by simp from ereal_open_cont_interval[OF a this] guess e . note e = this { fix x assume "x:S" hence "x>=Inf S" by (rule complete_lattice_class.Inf_lower) hence *: "x>Inf S-e" using e by (metis fin ereal_between(1) order_less_le_trans) { assume "x<Inf S+e" hence "x:{Inf S-e <..< Inf S+e}" using * by auto hence False using e `x:S` by auto } hence "x>=Inf S+e" by (metis linorder_le_less_linear) } hence "Inf S + e <= Inf S" by (metis le_Inf_iff) then show False using real e by (cases e) auto qed qed lemma ereal_closed_contains_Sup: fixes S :: "ereal set" assumes "closed S" "S ~= {}" shows "Sup S : S" proof- have "closed (uminus ` S)" by (metis assms(1) ereal_closed_uminus) hence "Inf (uminus ` S) : uminus ` S" using assms ereal_closed_contains_Inf[of "uminus ` S"] by auto hence "- Sup S : uminus ` S" using ereal_Sup_uminus_image_eq[of "uminus ` S"] by (auto simp: image_image) thus ?thesis by (metis imageI ereal_uminus_uminus ereal_minus_minus_image) qed lemma ereal_open_closed_aux: fixes S :: "ereal set" assumes "open S" "closed S" assumes S: "(-\<infinity>) ~: S" shows "S = {}" proof(rule ccontr) assume "S ~= {}" hence *: "(Inf S):S" by (metis assms(2) ereal_closed_contains_Inf) { assume "Inf S=(-\<infinity>)" hence False using * assms(3) by auto } moreover { assume "Inf S=\<infinity>" hence "S={\<infinity>}" by (metis Inf_eq_PInfty `S ~= {}`) hence False by (metis assms(1) not_open_singleton) } moreover { assume fin: "\<bar>Inf S\<bar> \<noteq> \<infinity>" from ereal_open_cont_interval[OF assms(1) * fin] guess e . note e = this then obtain b where b_def: "Inf S-e<b & b<Inf S" using fin ereal_between[of "Inf S" e] ereal_dense[of "Inf S-e"] by auto hence "b: {Inf S-e <..< Inf S+e}" using e fin ereal_between[of "Inf S" e] by auto hence "b:S" using e by auto hence False using b_def by (metis complete_lattice_class.Inf_lower leD) } ultimately show False by auto qed lemma ereal_open_closed: fixes S :: "ereal set" shows "(open S & closed S) <-> (S = {} | S = UNIV)" proof- { assume lhs: "open S & closed S" { assume "(-\<infinity>) ~: S" hence "S={}" using lhs ereal_open_closed_aux by auto } moreover { assume "(-\<infinity>) : S" hence "(- S)={}" using lhs ereal_open_closed_aux[of "-S"] by auto } ultimately have "S = {} | S = UNIV" by auto } thus ?thesis by auto qed lemma ereal_open_affinity_pos: fixes S :: "ereal set" assumes "open S" and m: "m \<noteq> \<infinity>" "0 < m" and t: "\<bar>t\<bar> \<noteq> \<infinity>" shows "open ((\<lambda>x. m * x + t) ` S)" proof - obtain r where r[simp]: "m = ereal r" using m by (cases m) auto obtain p where p[simp]: "t = ereal p" using t by auto have "r \<noteq> 0" "0 < r" and m': "m \<noteq> \<infinity>" "m \<noteq> -\<infinity>" "m \<noteq> 0" using m by auto from `open S`[THEN ereal_openE] guess l u . note T = this let ?f = "(\<lambda>x. m * x + t)" show ?thesis unfolding open_ereal_def proof (intro conjI impI exI subsetI) have "ereal -` ?f ` S = (\<lambda>x. r * x + p) ` (ereal -` S)" proof safe fix x y assume "ereal y = m * x + t" "x \<in> S" then show "y \<in> (\<lambda>x. r * x + p) ` ereal -` S" using `r \<noteq> 0` by (cases x) (auto intro!: image_eqI[of _ _ "real x"] split: split_if_asm) qed force then show "open (ereal -` ?f ` S)" using open_affinity[OF T(1) `r \<noteq> 0`] by (auto simp: ac_simps) next assume "\<infinity> \<in> ?f`S" with `0 < r` have "\<infinity> \<in> S" by auto fix x assume "x \<in> {ereal (r * l + p)<..}" then have [simp]: "ereal (r * l + p) < x" by auto show "x \<in> ?f`S" proof (rule image_eqI) show "x = m * ((x - t) / m) + t" using m t by (cases rule: ereal3_cases[of m x t]) auto have "ereal l < (x - t)/m" using m t by (simp add: ereal_less_divide_pos ereal_less_minus) then show "(x - t)/m \<in> S" using T(2)[OF `\<infinity> \<in> S`] by auto qed next assume "-\<infinity> \<in> ?f`S" with `0 < r` have "-\<infinity> \<in> S" by auto fix x assume "x \<in> {..<ereal (r * u + p)}" then have [simp]: "x < ereal (r * u + p)" by auto show "x \<in> ?f`S" proof (rule image_eqI) show "x = m * ((x - t) / m) + t" using m t by (cases rule: ereal3_cases[of m x t]) auto have "(x - t)/m < ereal u" using m t by (simp add: ereal_divide_less_pos ereal_minus_less) then show "(x - t)/m \<in> S" using T(3)[OF `-\<infinity> \<in> S`] by auto qed qed qed lemma ereal_open_affinity: fixes S :: "ereal set" assumes "open S" and m: "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" and t: "\<bar>t\<bar> \<noteq> \<infinity>" shows "open ((\<lambda>x. m * x + t) ` S)" proof cases assume "0 < m" then show ?thesis using ereal_open_affinity_pos[OF `open S` _ _ t, of m] m by auto next assume "\<not> 0 < m" then have "0 < -m" using `m \<noteq> 0` by (cases m) auto then have m: "-m \<noteq> \<infinity>" "0 < -m" using `\<bar>m\<bar> \<noteq> \<infinity>` by (auto simp: ereal_uminus_eq_reorder) from ereal_open_affinity_pos[OF ereal_open_uminus[OF `open S`] m t] show ?thesis unfolding image_image by simp qed lemma ereal_lim_mult: fixes X :: "'a \<Rightarrow> ereal" assumes lim: "(X ---> L) net" and a: "\<bar>a\<bar> \<noteq> \<infinity>" shows "((\<lambda>i. a * X i) ---> a * L) net" proof cases assume "a \<noteq> 0" show ?thesis proof (rule topological_tendstoI) fix S assume "open S" "a * L \<in> S" have "a * L / a = L" using `a \<noteq> 0` a by (cases rule: ereal2_cases[of a L]) auto then have L: "L \<in> ((\<lambda>x. x / a) ` S)" using `a * L \<in> S` by (force simp: image_iff) moreover have "open ((\<lambda>x. x / a) ` S)" using ereal_open_affinity[OF `open S`, of "inverse a" 0] `a \<noteq> 0` a by (auto simp: ereal_divide_eq ereal_inverse_eq_0 divide_ereal_def ac_simps) note * = lim[THEN topological_tendstoD, OF this L] { fix x from a `a \<noteq> 0` have "a * (x / a) = x" by (cases rule: ereal2_cases[of a x]) auto } note this[simp] show "eventually (\<lambda>x. a * X x \<in> S) net" by (rule eventually_mono[OF _ *]) auto qed qed auto lemma ereal_lim_uminus: fixes X :: "'a \<Rightarrow> ereal" shows "((\<lambda>i. - X i) ---> -L) net \<longleftrightarrow> (X ---> L) net" using ereal_lim_mult[of X L net "ereal (-1)"] ereal_lim_mult[of "(\<lambda>i. - X i)" "-L" net "ereal (-1)"] by (auto simp add: algebra_simps) lemma Lim_bounded2_ereal: assumes lim:"f ----> (l :: ereal)" and ge: "ALL n>=N. f n >= C" shows "l>=C" proof- def g == "(%i. -(f i))" { fix n assume "n>=N" hence "g n <= -C" using assms ereal_minus_le_minus g_def by auto } hence "ALL n>=N. g n <= -C" by auto moreover have limg: "g ----> (-l)" using g_def ereal_lim_uminus lim by auto ultimately have "-l <= -C" using Lim_bounded_ereal[of g "-l" _ "-C"] by auto from this show ?thesis using ereal_minus_le_minus by auto qed lemma ereal_open_atLeast: fixes x :: ereal shows "open {x..} \<longleftrightarrow> x = -\<infinity>" proof assume "x = -\<infinity>" then have "{x..} = UNIV" by auto then show "open {x..}" by auto next assume "open {x..}" then have "open {x..} \<and> closed {x..}" by auto then have "{x..} = UNIV" unfolding ereal_open_closed by auto then show "x = -\<infinity>" by (simp add: bot_ereal_def atLeast_eq_UNIV_iff) qed lemma ereal_open_mono_set: fixes S :: "ereal set" defines "a \<equiv> Inf S" shows "(open S \<and> mono_set S) \<longleftrightarrow> (S = UNIV \<or> S = {a <..})" by (metis Inf_UNIV a_def atLeast_eq_UNIV_iff ereal_open_atLeast ereal_open_closed mono_set_iff open_ereal_greaterThan) lemma ereal_closed_mono_set: fixes S :: "ereal set" shows "(closed S \<and> mono_set S) \<longleftrightarrow> (S = {} \<or> S = {Inf S ..})" by (metis Inf_UNIV atLeast_eq_UNIV_iff closed_ereal_atLeast ereal_open_closed mono_empty mono_set_iff open_ereal_greaterThan) lemma ereal_Liminf_Sup_monoset: fixes f :: "'a => ereal" shows "Liminf net f = Sup {l. \<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}" unfolding Liminf_Sup proof (intro arg_cong[where f="\<lambda>P. Sup (Collect P)"] ext iffI allI impI) fix l S assume ev: "\<forall>y<l. eventually (\<lambda>x. y < f x) net" and "open S" "mono_set S" "l \<in> S" then have "S = UNIV \<or> S = {Inf S <..}" using ereal_open_mono_set[of S] by auto then show "eventually (\<lambda>x. f x \<in> S) net" proof assume S: "S = {Inf S<..}" then have "Inf S < l" using `l \<in> S` by auto then have "eventually (\<lambda>x. Inf S < f x) net" using ev by auto then show "eventually (\<lambda>x. f x \<in> S) net" by (subst S) auto qed auto next fix l y assume S: "\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net" "y < l" have "eventually (\<lambda>x. f x \<in> {y <..}) net" using `y < l` by (intro S[rule_format]) auto then show "eventually (\<lambda>x. y < f x) net" by auto qed lemma ereal_Limsup_Inf_monoset: fixes f :: "'a => ereal" shows "Limsup net f = Inf {l. \<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}" unfolding Limsup_Inf proof (intro arg_cong[where f="\<lambda>P. Inf (Collect P)"] ext iffI allI impI) fix l S assume ev: "\<forall>y>l. eventually (\<lambda>x. f x < y) net" and "open S" "mono_set (uminus`S)" "l \<in> S" then have "open (uminus`S) \<and> mono_set (uminus`S)" by (simp add: ereal_open_uminus) then have "S = UNIV \<or> S = {..< Sup S}" unfolding ereal_open_mono_set ereal_Inf_uminus_image_eq ereal_image_uminus_shift by simp then show "eventually (\<lambda>x. f x \<in> S) net" proof assume S: "S = {..< Sup S}" then have "l < Sup S" using `l \<in> S` by auto then have "eventually (\<lambda>x. f x < Sup S) net" using ev by auto then show "eventually (\<lambda>x. f x \<in> S) net" by (subst S) auto qed auto next fix l y assume S: "\<forall>S. open S \<longrightarrow> mono_set (uminus`S) \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net" "l < y" have "eventually (\<lambda>x. f x \<in> {..< y}) net" using `l < y` by (intro S[rule_format]) auto then show "eventually (\<lambda>x. f x < y) net" by auto qed lemma open_uminus_iff: "open (uminus ` S) \<longleftrightarrow> open (S::ereal set)" using ereal_open_uminus[of S] ereal_open_uminus[of "uminus`S"] by auto lemma ereal_Limsup_uminus: fixes f :: "'a => ereal" shows "Limsup net (\<lambda>x. - (f x)) = -(Liminf net f)" proof - { fix P l have "(\<exists>x. (l::ereal) = -x \<and> P x) \<longleftrightarrow> P (-l)" by (auto intro!: exI[of _ "-l"]) } note Ex_cancel = this { fix P :: "ereal set \<Rightarrow> bool" have "(\<forall>S. P S) \<longleftrightarrow> (\<forall>S. P (uminus`S))" apply auto by (erule_tac x="uminus`S" in allE) (auto simp: image_image) } note add_uminus_image = this { fix x S have "(x::ereal) \<in> uminus`S \<longleftrightarrow> -x\<in>S" by (auto intro!: image_eqI[of _ _ "-x"]) } note remove_uminus_image = this show ?thesis unfolding ereal_Limsup_Inf_monoset ereal_Liminf_Sup_monoset unfolding ereal_Inf_uminus_image_eq[symmetric] image_Collect Ex_cancel by (subst add_uminus_image) (simp add: open_uminus_iff remove_uminus_image) qed lemma ereal_Liminf_uminus: fixes f :: "'a => ereal" shows "Liminf net (\<lambda>x. - (f x)) = -(Limsup net f)" using ereal_Limsup_uminus[of _ "(\<lambda>x. - (f x))"] by auto lemma ereal_Lim_uminus: fixes f :: "'a \<Rightarrow> ereal" shows "(f ---> f0) net \<longleftrightarrow> ((\<lambda>x. - f x) ---> - f0) net" using ereal_lim_mult[of f f0 net "- 1"] ereal_lim_mult[of "\<lambda>x. - (f x)" "-f0" net "- 1"] by (auto simp: ereal_uminus_reorder) lemma lim_imp_Limsup: fixes f :: "'a => ereal" assumes "\<not> trivial_limit net" assumes lim: "(f ---> f0) net" shows "Limsup net f = f0" using ereal_Lim_uminus[of f f0] lim_imp_Liminf[of net "(%x. -(f x))" "-f0"] ereal_Liminf_uminus[of net f] assms by simp lemma Liminf_PInfty: fixes f :: "'a \<Rightarrow> ereal" assumes "\<not> trivial_limit net" shows "(f ---> \<infinity>) net \<longleftrightarrow> Liminf net f = \<infinity>" proof (intro lim_imp_Liminf iffI assms) assume rhs: "Liminf net f = \<infinity>" { fix S :: "ereal set" assume "open S & \<infinity> : S" then obtain m where "{ereal m<..} <= S" using open_PInfty2 by auto moreover have "eventually (\<lambda>x. f x \<in> {ereal m<..}) net" using rhs unfolding Liminf_Sup top_ereal_def[symmetric] Sup_eq_top_iff by (auto elim!: allE[where x="ereal m"] simp: top_ereal_def) ultimately have "eventually (%x. f x : S) net" apply (subst eventually_mono) by auto } then show "(f ---> \<infinity>) net" unfolding tendsto_def by auto qed lemma Limsup_MInfty: fixes f :: "'a \<Rightarrow> ereal" assumes "\<not> trivial_limit net" shows "(f ---> -\<infinity>) net \<longleftrightarrow> Limsup net f = -\<infinity>" using assms ereal_Lim_uminus[of f "-\<infinity>"] Liminf_PInfty[of _ "\<lambda>x. - (f x)"] ereal_Liminf_uminus[of _ f] by (auto simp: ereal_uminus_eq_reorder) lemma ereal_Liminf_eq_Limsup: fixes f :: "'a \<Rightarrow> ereal" assumes ntriv: "\<not> trivial_limit net" assumes lim: "Liminf net f = f0" "Limsup net f = f0" shows "(f ---> f0) net" proof (cases f0) case PInf then show ?thesis using Liminf_PInfty[OF ntriv] lim by auto next case MInf then show ?thesis using Limsup_MInfty[OF ntriv] lim by auto next case (real r) show "(f ---> f0) net" proof (rule topological_tendstoI) fix S assume "open S""f0 \<in> S" then obtain a b where "a < Liminf net f" "Limsup net f < b" "{a<..<b} \<subseteq> S" using ereal_open_cont_interval2[of S f0] real lim by auto then have "eventually (\<lambda>x. f x \<in> {a<..<b}) net" unfolding Liminf_Sup Limsup_Inf less_Sup_iff Inf_less_iff by (auto intro!: eventually_conj) with `{a<..<b} \<subseteq> S` show "eventually (%x. f x : S) net" by (rule_tac eventually_mono) auto qed qed lemma ereal_Liminf_eq_Limsup_iff: fixes f :: "'a \<Rightarrow> ereal" assumes "\<not> trivial_limit net" shows "(f ---> f0) net \<longleftrightarrow> Liminf net f = f0 \<and> Limsup net f = f0" by (metis assms ereal_Liminf_eq_Limsup lim_imp_Liminf lim_imp_Limsup) lemma limsup_INFI_SUPR: fixes f :: "nat \<Rightarrow> ereal" shows "limsup f = (INF n. SUP m:{n..}. f m)" using ereal_Limsup_uminus[of sequentially "\<lambda>x. - f x"] by (simp add: liminf_SUPR_INFI ereal_INFI_uminus ereal_SUPR_uminus) lemma liminf_PInfty: fixes X :: "nat => ereal" shows "X ----> \<infinity> <-> liminf X = \<infinity>" by (metis Liminf_PInfty trivial_limit_sequentially) lemma limsup_MInfty: fixes X :: "nat => ereal" shows "X ----> (-\<infinity>) <-> limsup X = (-\<infinity>)" by (metis Limsup_MInfty trivial_limit_sequentially) lemma ereal_lim_mono: fixes X Y :: "nat => ereal" assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n" assumes "X ----> x" "Y ----> y" shows "x <= y" by (metis ereal_Liminf_eq_Limsup_iff[OF trivial_limit_sequentially] assms liminf_mono) lemma incseq_le_ereal: fixes X :: "nat \<Rightarrow> ereal" assumes inc: "incseq X" and lim: "X ----> L" shows "X N \<le> L" using inc by (intro ereal_lim_mono[of N, OF _ tendsto_const lim]) (simp add: incseq_def) lemma decseq_ge_ereal: assumes dec: "decseq X" and lim: "X ----> (L::ereal)" shows "X N >= L" using dec by (intro ereal_lim_mono[of N, OF _ lim tendsto_const]) (simp add: decseq_def) lemma liminf_bounded_open: fixes x :: "nat \<Rightarrow> ereal" shows "x0 \<le> liminf x \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> x0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. x n \<in> S))" (is "_ \<longleftrightarrow> ?P x0") proof assume "?P x0" then show "x0 \<le> liminf x" unfolding ereal_Liminf_Sup_monoset eventually_sequentially by (intro complete_lattice_class.Sup_upper) auto next assume "x0 \<le> liminf x" { fix S :: "ereal set" assume om: "open S & mono_set S & x0:S" { assume "S = UNIV" hence "EX N. (ALL n>=N. x n : S)" by auto } moreover { assume "~(S=UNIV)" then obtain B where B_def: "S = {B<..}" using om ereal_open_mono_set by auto hence "B<x0" using om by auto hence "EX N. ALL n>=N. x n : S" unfolding B_def using `x0 \<le> liminf x` liminf_bounded_iff by auto } ultimately have "EX N. (ALL n>=N. x n : S)" by auto } then show "?P x0" by auto qed lemma limsup_subseq_mono: fixes X :: "nat \<Rightarrow> ereal" assumes "subseq r" shows "limsup (X \<circ> r) \<le> limsup X" proof- have "(\<lambda>n. - X n) \<circ> r = (\<lambda>n. - (X \<circ> r) n)" by (simp add: fun_eq_iff) then have "- limsup X \<le> - limsup (X \<circ> r)" using liminf_subseq_mono[of r "(%n. - X n)"] ereal_Liminf_uminus[of sequentially X] ereal_Liminf_uminus[of sequentially "X o r"] assms by auto then show ?thesis by auto qed lemma bounded_abs: assumes "(a::real)<=x" "x<=b" shows "abs x <= max (abs a) (abs b)" by (metis abs_less_iff assms leI le_max_iff_disj less_eq_real_def less_le_not_le less_minus_iff minus_minus) lemma bounded_increasing_convergent2: fixes f::"nat => real" assumes "ALL n. f n <= B" "ALL n m. n>=m --> f n >= f m" shows "EX l. (f ---> l) sequentially" proof- def N == "max (abs (f 0)) (abs B)" { fix n have "abs (f n) <= N" unfolding N_def apply (subst bounded_abs) using assms by auto } hence "bounded {f n| n::nat. True}" unfolding bounded_real by auto from this show ?thesis apply(rule Topology_Euclidean_Space.bounded_increasing_convergent) using assms by auto qed lemma lim_ereal_increasing: assumes "\<And>n m. n >= m \<Longrightarrow> f n >= f m" obtains l where "f ----> (l::ereal)" proof(cases "f = (\<lambda>x. - \<infinity>)") case True then show thesis using tendsto_const[of "- \<infinity>" sequentially] by (intro that[of "-\<infinity>"]) auto next case False from this obtain N where N_def: "f N > (-\<infinity>)" by (auto simp: fun_eq_iff) have "ALL n>=N. f n >= f N" using assms by auto hence minf: "ALL n>=N. f n > (-\<infinity>)" using N_def by auto def Y == "(%n. (if n>=N then f n else f N))" hence incy: "!!n m. n>=m ==> Y n >= Y m" using assms by auto from minf have minfy: "ALL n. Y n ~= (-\<infinity>)" using Y_def by auto show thesis proof(cases "EX B. ALL n. f n < ereal B") case False thus thesis apply- apply(rule that[of \<infinity>]) unfolding Lim_PInfty not_ex not_all apply safe apply(erule_tac x=B in allE,safe) apply(rule_tac x=x in exI,safe) apply(rule order_trans[OF _ assms[rule_format]]) by auto next case True then guess B .. hence "ALL n. Y n < ereal B" using Y_def by auto note B = this[rule_format] { fix n have "Y n < \<infinity>" using B[of n] apply (subst less_le_trans) by auto hence "Y n ~= \<infinity> & Y n ~= (-\<infinity>)" using minfy by auto } hence *: "ALL n. \<bar>Y n\<bar> \<noteq> \<infinity>" by auto { fix n have "real (Y n) < B" proof- case goal1 thus ?case using B[of n] apply-apply(subst(asm) ereal_real'[THEN sym]) defer defer unfolding ereal_less using * by auto qed } hence B': "ALL n. (real (Y n) <= B)" using less_imp_le by auto have "EX l. (%n. real (Y n)) ----> l" apply(rule bounded_increasing_convergent2) proof safe show "!!n. real (Y n) <= B" using B' by auto fix n m::nat assume "n<=m" hence "ereal (real (Y n)) <= ereal (real (Y m))" using incy[rule_format,of n m] apply(subst ereal_real)+ using *[rule_format, of n] *[rule_format, of m] by auto thus "real (Y n) <= real (Y m)" by auto qed then guess l .. note l=this have "Y ----> ereal l" using l apply-apply(subst(asm) lim_ereal[THEN sym]) unfolding ereal_real using * by auto thus thesis apply-apply(rule that[of "ereal l"]) apply (subst tail_same_limit[of Y _ N]) using Y_def by auto qed qed lemma lim_ereal_decreasing: assumes "\<And>n m. n >= m \<Longrightarrow> f n <= f m" obtains l where "f ----> (l::ereal)" proof - from lim_ereal_increasing[of "\<lambda>x. - f x"] assms obtain l where "(\<lambda>x. - f x) ----> l" by auto from ereal_lim_mult[OF this, of "- 1"] show thesis by (intro that[of "-l"]) (simp add: ereal_uminus_eq_reorder) qed lemma compact_ereal: fixes X :: "nat \<Rightarrow> ereal" shows "\<exists>l r. subseq r \<and> (X \<circ> r) ----> l" proof - obtain r where "subseq r" and mono: "monoseq (X \<circ> r)" using seq_monosub[of X] unfolding comp_def by auto then have "(\<forall>n m. m \<le> n \<longrightarrow> (X \<circ> r) m \<le> (X \<circ> r) n) \<or> (\<forall>n m. m \<le> n \<longrightarrow> (X \<circ> r) n \<le> (X \<circ> r) m)" by (auto simp add: monoseq_def) then obtain l where "(X\<circ>r) ----> l" using lim_ereal_increasing[of "X \<circ> r"] lim_ereal_decreasing[of "X \<circ> r"] by auto then show ?thesis using `subseq r` by auto qed lemma ereal_Sup_lim: assumes "\<And>n. b n \<in> s" "b ----> (a::ereal)" shows "a \<le> Sup s" by (metis Lim_bounded_ereal assms complete_lattice_class.Sup_upper) lemma ereal_Inf_lim: assumes "\<And>n. b n \<in> s" "b ----> (a::ereal)" shows "Inf s \<le> a" by (metis Lim_bounded2_ereal assms complete_lattice_class.Inf_lower) lemma SUP_Lim_ereal: fixes X :: "nat \<Rightarrow> ereal" assumes "incseq X" "X ----> l" shows "(SUP n. X n) = l" proof (rule ereal_SUPI) fix n from assms show "X n \<le> l" by (intro incseq_le_ereal) (simp add: incseq_def) next fix y assume "\<And>n. n \<in> UNIV \<Longrightarrow> X n \<le> y" with ereal_Sup_lim[OF _ `X ----> l`, of "{..y}"] show "l \<le> y" by auto qed lemma LIMSEQ_ereal_SUPR: fixes X :: "nat \<Rightarrow> ereal" assumes "incseq X" shows "X ----> (SUP n. X n)" proof (rule lim_ereal_increasing) fix n m :: nat assume "m \<le> n" then show "X m \<le> X n" using `incseq X` by (simp add: incseq_def) next fix l assume "X ----> l" with SUP_Lim_ereal[of X, OF assms this] show ?thesis by simp qed lemma INF_Lim_ereal: "decseq X \<Longrightarrow> X ----> l \<Longrightarrow> (INF n. X n) = (l::ereal)" using SUP_Lim_ereal[of "\<lambda>i. - X i" "- l"] by (simp add: ereal_SUPR_uminus ereal_lim_uminus) lemma LIMSEQ_ereal_INFI: "decseq X \<Longrightarrow> X ----> (INF n. X n :: ereal)" using LIMSEQ_ereal_SUPR[of "\<lambda>i. - X i"] by (simp add: ereal_SUPR_uminus ereal_lim_uminus) lemma SUP_eq_LIMSEQ: assumes "mono f" shows "(SUP n. ereal (f n)) = ereal x \<longleftrightarrow> f ----> x" proof have inc: "incseq (\<lambda>i. ereal (f i))" using `mono f` unfolding mono_def incseq_def by auto { assume "f ----> x" then have "(\<lambda>i. ereal (f i)) ----> ereal x" by auto from SUP_Lim_ereal[OF inc this] show "(SUP n. ereal (f n)) = ereal x" . } { assume "(SUP n. ereal (f n)) = ereal x" with LIMSEQ_ereal_SUPR[OF inc] show "f ----> x" by auto } qed lemma Liminf_within: fixes f :: "'a::metric_space => ereal" shows "Liminf (at x within S) f = (SUP e:{0<..}. INF y:(S Int ball x e - {x}). f y)" proof- let ?l="(SUP e:{0<..}. INF y:(S Int ball x e - {x}). f y)" { fix T assume T_def: "open T & mono_set T & ?l:T" have "EX d>0. ALL y:S. 0 < dist y x & dist y x < d --> f y : T" proof- { assume "T=UNIV" hence ?thesis by (simp add: gt_ex) } moreover { assume "~(T=UNIV)" then obtain B where "T={B<..}" using T_def ereal_open_mono_set[of T] by auto hence "B<?l" using T_def by auto then obtain d where d_def: "0<d & B<(INF y:(S Int ball x d - {x}). f y)" unfolding less_SUP_iff by auto { fix y assume "y:S & 0 < dist y x & dist y x < d" hence "y:(S Int ball x d - {x})" unfolding ball_def by (auto simp add: dist_commute) hence "f y:T" using d_def INF_lower[of y "S Int ball x d - {x}" f] `T={B<..}` by auto } hence ?thesis apply(rule_tac x="d" in exI) using d_def by auto } ultimately show ?thesis by auto qed } moreover { fix z assume a: "ALL T. open T --> mono_set T --> z : T --> (EX d>0. ALL y:S. 0 < dist y x & dist y x < d --> f y : T)" { fix B assume "B<z" then obtain d where d_def: "d>0 & (ALL y:S. 0 < dist y x & dist y x < d --> B < f y)" using a[rule_format, of "{B<..}"] mono_greaterThan by auto { fix y assume "y:(S Int ball x d - {x})" hence "y:S & 0 < dist y x & dist y x < d" unfolding ball_def apply (simp add: dist_commute) by (metis dist_eq_0_iff less_le zero_le_dist) hence "B <= f y" using d_def by auto } hence "B <= INFI (S Int ball x d - {x}) f" apply (subst INF_greatest) by auto also have "...<=?l" apply (subst SUP_upper) using d_def by auto finally have "B<=?l" by auto } hence "z <= ?l" using ereal_le_ereal[of z "?l"] by auto } ultimately show ?thesis unfolding ereal_Liminf_Sup_monoset eventually_within apply (subst ereal_SupI[of _ "(SUP e:{0<..}. INFI (S Int ball x e - {x}) f)"]) by auto qed lemma Limsup_within: fixes f :: "'a::metric_space => ereal" shows "Limsup (at x within S) f = (INF e:{0<..}. SUP y:(S Int ball x e - {x}). f y)" proof- let ?l="(INF e:{0<..}. SUP y:(S Int ball x e - {x}). f y)" { fix T assume T_def: "open T & mono_set (uminus ` T) & ?l:T" have "EX d>0. ALL y:S. 0 < dist y x & dist y x < d --> f y : T" proof- { assume "T=UNIV" hence ?thesis by (simp add: gt_ex) } moreover { assume "~(T=UNIV)" hence "~(uminus ` T = UNIV)" by (metis Int_UNIV_right Int_absorb1 image_mono ereal_minus_minus_image subset_UNIV) hence "uminus ` T = {Inf (uminus ` T)<..}" using T_def ereal_open_mono_set[of "uminus ` T"] ereal_open_uminus[of T] by auto then obtain B where "T={..<B}" unfolding ereal_Inf_uminus_image_eq ereal_uminus_lessThan[symmetric] unfolding inj_image_eq_iff[OF ereal_inj_on_uminus] by simp hence "?l<B" using T_def by auto then obtain d where d_def: "0<d & (SUP y:(S Int ball x d - {x}). f y)<B" unfolding INF_less_iff by auto { fix y assume "y:S & 0 < dist y x & dist y x < d" hence "y:(S Int ball x d - {x})" unfolding ball_def by (auto simp add: dist_commute) hence "f y:T" using d_def SUP_upper[of y "S Int ball x d - {x}" f] `T={..<B}` by auto } hence ?thesis apply(rule_tac x="d" in exI) using d_def by auto } ultimately show ?thesis by auto qed } moreover { fix z assume a: "ALL T. open T --> mono_set (uminus ` T) --> z : T --> (EX d>0. ALL y:S. 0 < dist y x & dist y x < d --> f y : T)" { fix B assume "z<B" then obtain d where d_def: "d>0 & (ALL y:S. 0 < dist y x & dist y x < d --> f y<B)" using a[rule_format, of "{..<B}"] by auto { fix y assume "y:(S Int ball x d - {x})" hence "y:S & 0 < dist y x & dist y x < d" unfolding ball_def apply (simp add: dist_commute) by (metis dist_eq_0_iff less_le zero_le_dist) hence "f y <= B" using d_def by auto } hence "SUPR (S Int ball x d - {x}) f <= B" apply (subst SUP_least) by auto moreover have "?l<=SUPR (S Int ball x d - {x}) f" apply (subst INF_lower) using d_def by auto ultimately have "?l<=B" by auto } hence "?l <= z" using ereal_ge_ereal[of z "?l"] by auto } ultimately show ?thesis unfolding ereal_Limsup_Inf_monoset eventually_within apply (subst ereal_InfI) by auto qed lemma Liminf_within_UNIV: fixes f :: "'a::metric_space => ereal" shows "Liminf (at x) f = Liminf (at x within UNIV) f" by simp (* TODO: delete *) lemma Liminf_at: fixes f :: "'a::metric_space => ereal" shows "Liminf (at x) f = (SUP e:{0<..}. INF y:(ball x e - {x}). f y)" using Liminf_within[of x UNIV f] by simp lemma Limsup_within_UNIV: fixes f :: "'a::metric_space => ereal" shows "Limsup (at x) f = Limsup (at x within UNIV) f" by simp (* TODO: delete *) lemma Limsup_at: fixes f :: "'a::metric_space => ereal" shows "Limsup (at x) f = (INF e:{0<..}. SUP y:(ball x e - {x}). f y)" using Limsup_within[of x UNIV f] by simp lemma Lim_within_constant: assumes "ALL y:S. f y = C" shows "(f ---> C) (at x within S)" unfolding tendsto_def Limits.eventually_within eventually_at_topological using assms by simp (metis open_UNIV UNIV_I) lemma Liminf_within_constant: fixes f :: "'a::topological_space \<Rightarrow> ereal" assumes "ALL y:S. f y = C" assumes "~trivial_limit (at x within S)" shows "Liminf (at x within S) f = C" by (metis Lim_within_constant assms lim_imp_Liminf) lemma Limsup_within_constant: fixes f :: "'a::topological_space \<Rightarrow> ereal" assumes "ALL y:S. f y = C" assumes "~trivial_limit (at x within S)" shows "Limsup (at x within S) f = C" by (metis Lim_within_constant assms lim_imp_Limsup) lemma islimpt_punctured: "x islimpt S = x islimpt (S-{x})" unfolding islimpt_def by blast lemma islimpt_in_closure: "(x islimpt S) = (x:closure(S-{x}))" unfolding closure_def using islimpt_punctured by blast lemma not_trivial_limit_within: "~trivial_limit (at x within S) = (x:closure(S-{x}))" using islimpt_in_closure by (metis trivial_limit_within) lemma not_trivial_limit_within_ball: "(~trivial_limit (at x within S)) = (ALL e>0. S Int ball x e - {x} ~= {})" (is "?lhs = ?rhs") proof- { assume "?lhs" { fix e :: real assume "e>0" then obtain y where "y:(S-{x}) & dist y x < e" using `?lhs` not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"] by auto hence "y : (S Int ball x e - {x})" unfolding ball_def by (simp add: dist_commute) hence "S Int ball x e - {x} ~= {}" by blast } hence "?rhs" by auto } moreover { assume "?rhs" { fix e :: real assume "e>0" then obtain y where "y : (S Int ball x e - {x})" using `?rhs` by blast hence "y:(S-{x}) & dist y x < e" unfolding ball_def by (simp add: dist_commute) hence "EX y:(S-{x}). dist y x < e" by auto } hence "?lhs" using not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"] by auto } ultimately show ?thesis by auto qed lemma liminf_ereal_cminus: fixes f :: "nat \<Rightarrow> ereal" assumes "c \<noteq> -\<infinity>" shows "liminf (\<lambda>x. c - f x) = c - limsup f" proof (cases c) case PInf then show ?thesis by (simp add: Liminf_const) next case (real r) then show ?thesis unfolding liminf_SUPR_INFI limsup_INFI_SUPR apply (subst INFI_ereal_cminus) apply auto apply (subst SUPR_ereal_cminus) apply auto done qed (insert `c \<noteq> -\<infinity>`, simp) subsubsection {* Continuity *} lemma continuous_imp_tendsto: assumes "continuous (at x0) f" assumes "x ----> x0" shows "(f o x) ----> (f x0)" proof- { fix S assume "open S & (f x0):S" from this obtain T where T_def: "open T & x0 : T & (ALL x:T. f x : S)" using assms continuous_at_open by metis hence "(EX N. ALL n>=N. x n : T)" using assms tendsto_explicit T_def by auto hence "(EX N. ALL n>=N. f(x n) : S)" using T_def by auto } from this show ?thesis using tendsto_explicit[of "f o x" "f x0"] by auto qed lemma continuous_at_sequentially2: fixes f :: "'a::metric_space => 'b:: topological_space" shows "continuous (at x0) f <-> (ALL x. (x ----> x0) --> (f o x) ----> (f x0))" proof- { assume "~(continuous (at x0) f)" from this obtain T where T_def: "open T & f x0 : T & (ALL S. (open S & x0 : S) --> (EX x':S. f x' ~: T))" using continuous_at_open[of x0 f] by metis def X == "{x'. f x' ~: T}" hence "x0 islimpt X" unfolding islimpt_def using T_def by auto from this obtain x where x_def: "(ALL n. x n : X) & x ----> x0" using islimpt_sequential[of x0 X] by auto hence "~(f o x) ----> (f x0)" unfolding tendsto_explicit using X_def T_def by auto hence "EX x. x ----> x0 & (~(f o x) ----> (f x0))" using x_def by auto } from this show ?thesis using continuous_imp_tendsto by auto qed lemma continuous_at_of_ereal: fixes x0 :: ereal assumes "\<bar>x0\<bar> \<noteq> \<infinity>" shows "continuous (at x0) real" proof- { fix T assume T_def: "open T & real x0 : T" def S == "ereal ` T" hence "ereal (real x0) : S" using T_def by auto hence "x0 : S" using assms ereal_real by auto moreover have "open S" using open_ereal S_def T_def by auto moreover have "ALL y:S. real y : T" using S_def T_def by auto ultimately have "EX S. x0 : S & open S & (ALL y:S. real y : T)" by auto } from this show ?thesis unfolding continuous_at_open by blast qed lemma continuous_at_iff_ereal: fixes f :: "'a::t2_space => real" shows "continuous (at x0) f <-> continuous (at x0) (ereal o f)" proof- { assume "continuous (at x0) f" hence "continuous (at x0) (ereal o f)" using continuous_at_ereal continuous_at_compose[of x0 f ereal] by auto } moreover { assume "continuous (at x0) (ereal o f)" hence "continuous (at x0) (real o (ereal o f))" using continuous_at_of_ereal by (intro continuous_at_compose[of x0 "ereal o f"]) auto moreover have "real o (ereal o f) = f" using real_ereal_id by (simp add: o_assoc) ultimately have "continuous (at x0) f" by auto } ultimately show ?thesis by auto qed lemma continuous_on_iff_ereal: fixes f :: "'a::t2_space => real" fixes A assumes "open A" shows "continuous_on A f <-> continuous_on A (ereal o f)" using continuous_at_iff_ereal assms by (auto simp add: continuous_on_eq_continuous_at) lemma continuous_on_real: "continuous_on (UNIV-{\<infinity>,(-\<infinity>::ereal)}) real" using continuous_at_of_ereal continuous_on_eq_continuous_at open_image_ereal by auto lemma continuous_on_iff_real: fixes f :: "'a::t2_space => ereal" assumes "\<And>x. x \<in> A \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" shows "continuous_on A f \<longleftrightarrow> continuous_on A (real \<circ> f)" proof- have "f ` A <= UNIV-{\<infinity>,(-\<infinity>)}" using assms by force hence *: "continuous_on (f ` A) real" using continuous_on_real by (simp add: continuous_on_subset) have **: "continuous_on ((real o f) ` A) ereal" using continuous_on_ereal continuous_on_subset[of "UNIV" "ereal" "(real o f) ` A"] by blast { assume "continuous_on A f" hence "continuous_on A (real o f)" apply (subst continuous_on_compose) using * by auto } moreover { assume "continuous_on A (real o f)" hence "continuous_on A (ereal o (real o f))" apply (subst continuous_on_compose) using ** by auto hence "continuous_on A f" apply (subst continuous_on_eq[of A "ereal o (real o f)" f]) using assms ereal_real by auto } ultimately show ?thesis by auto qed lemma continuous_at_const: fixes f :: "'a::t2_space => ereal" assumes "ALL x. (f x = C)" shows "ALL x. continuous (at x) f" unfolding continuous_at_open using assms t1_space by auto lemma closure_contains_Inf: fixes S :: "real set" assumes "S ~= {}" "EX B. ALL x:S. B<=x" shows "Inf S : closure S" proof- have *: "ALL x:S. Inf S <= x" using Inf_lower_EX[of _ S] assms by metis { fix e assume "e>(0 :: real)" from this obtain x where x_def: "x:S & x < Inf S + e" using Inf_close `S ~= {}` by auto moreover hence "x > Inf S - e" using * by auto ultimately have "abs (x - Inf S) < e" by (simp add: abs_diff_less_iff) hence "EX x:S. abs (x - Inf S) < e" using x_def by auto } from this show ?thesis apply (subst closure_approachable) unfolding dist_norm by auto qed lemma closed_contains_Inf: fixes S :: "real set" assumes "S ~= {}" "EX B. ALL x:S. B<=x" assumes "closed S" shows "Inf S : S" by (metis closure_contains_Inf closure_closed assms) lemma mono_closed_real: fixes S :: "real set" assumes mono: "ALL y z. y:S & y<=z --> z:S" assumes "closed S" shows "S = {} | S = UNIV | (EX a. S = {a ..})" proof- { assume "S ~= {}" { assume ex: "EX B. ALL x:S. B<=x" hence *: "ALL x:S. Inf S <= x" using Inf_lower_EX[of _ S] ex by metis hence "Inf S : S" apply (subst closed_contains_Inf) using ex `S ~= {}` `closed S` by auto hence "ALL x. (Inf S <= x <-> x:S)" using mono[rule_format, of "Inf S"] * by auto hence "S = {Inf S ..}" by auto hence "EX a. S = {a ..}" by auto } moreover { assume "~(EX B. ALL x:S. B<=x)" hence nex: "ALL B. EX x:S. x<B" by (simp add: not_le) { fix y obtain x where "x:S & x < y" using nex by auto hence "y:S" using mono[rule_format, of x y] by auto } hence "S = UNIV" by auto } ultimately have "S = UNIV | (EX a. S = {a ..})" by blast } from this show ?thesis by blast qed lemma mono_closed_ereal: fixes S :: "real set" assumes mono: "ALL y z. y:S & y<=z --> z:S" assumes "closed S" shows "EX a. S = {x. a <= ereal x}" proof- { assume "S = {}" hence ?thesis apply(rule_tac x=PInfty in exI) by auto } moreover { assume "S = UNIV" hence ?thesis apply(rule_tac x="-\<infinity>" in exI) by auto } moreover { assume "EX a. S = {a ..}" from this obtain a where "S={a ..}" by auto hence ?thesis apply(rule_tac x="ereal a" in exI) by auto } ultimately show ?thesis using mono_closed_real[of S] assms by auto qed subsection {* Sums *} lemma setsum_ereal[simp]: "(\<Sum>x\<in>A. ereal (f x)) = ereal (\<Sum>x\<in>A. f x)" proof cases assume "finite A" then show ?thesis by induct auto qed simp lemma setsum_Pinfty: fixes f :: "'a \<Rightarrow> ereal" shows "(\<Sum>x\<in>P. f x) = \<infinity> \<longleftrightarrow> (finite P \<and> (\<exists>i\<in>P. f i = \<infinity>))" proof safe assume *: "setsum f P = \<infinity>" show "finite P" proof (rule ccontr) assume "infinite P" with * show False by auto qed show "\<exists>i\<in>P. f i = \<infinity>" proof (rule ccontr) assume "\<not> ?thesis" then have "\<And>i. i \<in> P \<Longrightarrow> f i \<noteq> \<infinity>" by auto from `finite P` this have "setsum f P \<noteq> \<infinity>" by induct auto with * show False by auto qed next fix i assume "finite P" "i \<in> P" "f i = \<infinity>" thus "setsum f P = \<infinity>" proof induct case (insert x A) show ?case using insert by (cases "x = i") auto qed simp qed lemma setsum_Inf: fixes f :: "'a \<Rightarrow> ereal" shows "\<bar>setsum f A\<bar> = \<infinity> \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>))" proof assume *: "\<bar>setsum f A\<bar> = \<infinity>" have "finite A" by (rule ccontr) (insert *, auto) moreover have "\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>" proof (rule ccontr) assume "\<not> ?thesis" then have "\<forall>i\<in>A. \<exists>r. f i = ereal r" by auto from bchoice[OF this] guess r .. with * show False by auto qed ultimately show "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" by auto next assume "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" then obtain i where "finite A" "i \<in> A" "\<bar>f i\<bar> = \<infinity>" by auto then show "\<bar>setsum f A\<bar> = \<infinity>" proof induct case (insert j A) then show ?case by (cases rule: ereal3_cases[of "f i" "f j" "setsum f A"]) auto qed simp qed lemma setsum_real_of_ereal: fixes f :: "'i \<Rightarrow> ereal" assumes "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" shows "(\<Sum>x\<in>S. real (f x)) = real (setsum f S)" proof - have "\<forall>x\<in>S. \<exists>r. f x = ereal r" proof fix x assume "x \<in> S" from assms[OF this] show "\<exists>r. f x = ereal r" by (cases "f x") auto qed from bchoice[OF this] guess r .. then show ?thesis by simp qed lemma setsum_ereal_0: fixes f :: "'a \<Rightarrow> ereal" assumes "finite A" "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i" shows "(\<Sum>x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>i\<in>A. f i = 0)" proof assume *: "(\<Sum>x\<in>A. f x) = 0" then have "(\<Sum>x\<in>A. f x) \<noteq> \<infinity>" by auto then have "\<forall>i\<in>A. \<bar>f i\<bar> \<noteq> \<infinity>" using assms by (force simp: setsum_Pinfty) then have "\<forall>i\<in>A. \<exists>r. f i = ereal r" by auto from bchoice[OF this] * assms show "\<forall>i\<in>A. f i = 0" using setsum_nonneg_eq_0_iff[of A "\<lambda>i. real (f i)"] by auto qed (rule setsum_0') lemma setsum_ereal_right_distrib: fixes f :: "'a \<Rightarrow> ereal" assumes "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i" shows "r * setsum f A = (\<Sum>n\<in>A. r * f n)" proof cases assume "finite A" then show ?thesis using assms by induct (auto simp: ereal_right_distrib setsum_nonneg) qed simp lemma sums_ereal_positive: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" shows "f sums (SUP n. \<Sum>i<n. f i)" proof - have "incseq (\<lambda>i. \<Sum>j=0..<i. f j)" using ereal_add_mono[OF _ assms] by (auto intro!: incseq_SucI) from LIMSEQ_ereal_SUPR[OF this] show ?thesis unfolding sums_def by (simp add: atLeast0LessThan) qed lemma summable_ereal_pos: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" shows "summable f" using sums_ereal_positive[of f, OF assms] unfolding summable_def by auto lemma suminf_ereal_eq_SUPR: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" shows "(\<Sum>x. f x) = (SUP n. \<Sum>i<n. f i)" using sums_ereal_positive[of f, OF assms, THEN sums_unique] by simp lemma sums_ereal: "(\<lambda>x. ereal (f x)) sums ereal x \<longleftrightarrow> f sums x" unfolding sums_def by simp lemma suminf_bound: fixes f :: "nat \<Rightarrow> ereal" assumes "\<forall>N. (\<Sum>n<N. f n) \<le> x" and pos: "\<And>n. 0 \<le> f n" shows "suminf f \<le> x" proof (rule Lim_bounded_ereal) have "summable f" using pos[THEN summable_ereal_pos] . then show "(\<lambda>N. \<Sum>n<N. f n) ----> suminf f" by (auto dest!: summable_sums simp: sums_def atLeast0LessThan) show "\<forall>n\<ge>0. setsum f {..<n} \<le> x" using assms by auto qed lemma suminf_bound_add: fixes f :: "nat \<Rightarrow> ereal" assumes "\<forall>N. (\<Sum>n<N. f n) + y \<le> x" and pos: "\<And>n. 0 \<le> f n" and "y \<noteq> -\<infinity>" shows "suminf f + y \<le> x" proof (cases y) case (real r) then have "\<forall>N. (\<Sum>n<N. f n) \<le> x - y" using assms by (simp add: ereal_le_minus) then have "(\<Sum> n. f n) \<le> x - y" using pos by (rule suminf_bound) then show "(\<Sum> n. f n) + y \<le> x" using assms real by (simp add: ereal_le_minus) qed (insert assms, auto) lemma sums_finite: assumes "\<forall>N\<ge>n. f N = 0" shows "f sums (\<Sum>N<n. f N)" proof - { fix i have "(\<Sum>N<i + n. f N) = (\<Sum>N<n. f N)" by (induct i) (insert assms, auto) } note this[simp] show ?thesis unfolding sums_def by (rule LIMSEQ_offset[of _ n]) (auto simp add: atLeast0LessThan intro: tendsto_const) qed lemma suminf_finite: fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,t2_space}" assumes "\<forall>N\<ge>n. f N = 0" shows "suminf f = (\<Sum>N<n. f N)" using sums_finite[OF assms, THEN sums_unique] by simp lemma suminf_upper: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>n. 0 \<le> f n" shows "(\<Sum>n<N. f n) \<le> (\<Sum>n. f n)" unfolding suminf_ereal_eq_SUPR[OF assms] SUP_def by (auto intro: complete_lattice_class.Sup_upper) lemma suminf_0_le: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>n. 0 \<le> f n" shows "0 \<le> (\<Sum>n. f n)" using suminf_upper[of f 0, OF assms] by simp lemma suminf_le_pos: fixes f g :: "nat \<Rightarrow> ereal" assumes "\<And>N. f N \<le> g N" "\<And>N. 0 \<le> f N" shows "suminf f \<le> suminf g" proof (safe intro!: suminf_bound) fix n { fix N have "0 \<le> g N" using assms(2,1)[of N] by auto } have "setsum f {..<n} \<le> setsum g {..<n}" using assms by (auto intro: setsum_mono) also have "... \<le> suminf g" using `\<And>N. 0 \<le> g N` by (rule suminf_upper) finally show "setsum f {..<n} \<le> suminf g" . qed (rule assms(2)) lemma suminf_half_series_ereal: "(\<Sum>n. (1/2 :: ereal)^Suc n) = 1" using sums_ereal[THEN iffD2, OF power_half_series, THEN sums_unique, symmetric] by (simp add: one_ereal_def) lemma suminf_add_ereal: fixes f g :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" shows "(\<Sum>i. f i + g i) = suminf f + suminf g" apply (subst (1 2 3) suminf_ereal_eq_SUPR) unfolding setsum_addf by (intro assms ereal_add_nonneg_nonneg SUPR_ereal_add_pos incseq_setsumI setsum_nonneg ballI)+ lemma suminf_cmult_ereal: fixes f g :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "0 \<le> a" shows "(\<Sum>i. a * f i) = a * suminf f" by (auto simp: setsum_ereal_right_distrib[symmetric] assms ereal_zero_le_0_iff setsum_nonneg suminf_ereal_eq_SUPR intro!: SUPR_ereal_cmult ) lemma suminf_PInfty: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "suminf f \<noteq> \<infinity>" shows "f i \<noteq> \<infinity>" proof - from suminf_upper[of f "Suc i", OF assms(1)] assms(2) have "(\<Sum>i<Suc i. f i) \<noteq> \<infinity>" by auto then show ?thesis unfolding setsum_Pinfty by simp qed lemma suminf_PInfty_fun: assumes "\<And>i. 0 \<le> f i" "suminf f \<noteq> \<infinity>" shows "\<exists>f'. f = (\<lambda>x. ereal (f' x))" proof - have "\<forall>i. \<exists>r. f i = ereal r" proof fix i show "\<exists>r. f i = ereal r" using suminf_PInfty[OF assms] assms(1)[of i] by (cases "f i") auto qed from choice[OF this] show ?thesis by auto qed lemma summable_ereal: assumes "\<And>i. 0 \<le> f i" "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>" shows "summable f" proof - have "0 \<le> (\<Sum>i. ereal (f i))" using assms by (intro suminf_0_le) auto with assms obtain r where r: "(\<Sum>i. ereal (f i)) = ereal r" by (cases "\<Sum>i. ereal (f i)") auto from summable_ereal_pos[of "\<lambda>x. ereal (f x)"] have "summable (\<lambda>x. ereal (f x))" using assms by auto from summable_sums[OF this] have "(\<lambda>x. ereal (f x)) sums (\<Sum>x. ereal (f x))" by auto then show "summable f" unfolding r sums_ereal summable_def .. qed lemma suminf_ereal: assumes "\<And>i. 0 \<le> f i" "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>" shows "(\<Sum>i. ereal (f i)) = ereal (suminf f)" proof (rule sums_unique[symmetric]) from summable_ereal[OF assms] show "(\<lambda>x. ereal (f x)) sums (ereal (suminf f))" unfolding sums_ereal using assms by (intro summable_sums summable_ereal) qed lemma suminf_ereal_minus: fixes f g :: "nat \<Rightarrow> ereal" assumes ord: "\<And>i. g i \<le> f i" "\<And>i. 0 \<le> g i" and fin: "suminf f \<noteq> \<infinity>" "suminf g \<noteq> \<infinity>" shows "(\<Sum>i. f i - g i) = suminf f - suminf g" proof - { fix i have "0 \<le> f i" using ord[of i] by auto } moreover from suminf_PInfty_fun[OF `\<And>i. 0 \<le> f i` fin(1)] guess f' .. note this[simp] from suminf_PInfty_fun[OF `\<And>i. 0 \<le> g i` fin(2)] guess g' .. note this[simp] { fix i have "0 \<le> f i - g i" using ord[of i] by (auto simp: ereal_le_minus_iff) } moreover have "suminf (\<lambda>i. f i - g i) \<le> suminf f" using assms by (auto intro!: suminf_le_pos simp: field_simps) then have "suminf (\<lambda>i. f i - g i) \<noteq> \<infinity>" using fin by auto ultimately show ?thesis using assms `\<And>i. 0 \<le> f i` apply simp by (subst (1 2 3) suminf_ereal) (auto intro!: suminf_diff[symmetric] summable_ereal) qed lemma suminf_ereal_PInf[simp]: "(\<Sum>x. \<infinity>::ereal) = \<infinity>" proof - have "(\<Sum>i<Suc 0. \<infinity>) \<le> (\<Sum>x. \<infinity>::ereal)" by (rule suminf_upper) auto then show ?thesis by simp qed lemma summable_real_of_ereal: fixes f :: "nat \<Rightarrow> ereal" assumes f: "\<And>i. 0 \<le> f i" and fin: "(\<Sum>i. f i) \<noteq> \<infinity>" shows "summable (\<lambda>i. real (f i))" proof (rule summable_def[THEN iffD2]) have "0 \<le> (\<Sum>i. f i)" using assms by (auto intro: suminf_0_le) with fin obtain r where r: "ereal r = (\<Sum>i. f i)" by (cases "(\<Sum>i. f i)") auto { fix i have "f i \<noteq> \<infinity>" using f by (intro suminf_PInfty[OF _ fin]) auto then have "\<bar>f i\<bar> \<noteq> \<infinity>" using f[of i] by auto } note fin = this have "(\<lambda>i. ereal (real (f i))) sums (\<Sum>i. ereal (real (f i)))" using f by (auto intro!: summable_ereal_pos summable_sums simp: ereal_le_real_iff zero_ereal_def) also have "\<dots> = ereal r" using fin r by (auto simp: ereal_real) finally show "\<exists>r. (\<lambda>i. real (f i)) sums r" by (auto simp: sums_ereal) qed lemma suminf_SUP_eq: fixes f :: "nat \<Rightarrow> nat \<Rightarrow> ereal" assumes "\<And>i. incseq (\<lambda>n. f n i)" "\<And>n i. 0 \<le> f n i" shows "(\<Sum>i. SUP n. f n i) = (SUP n. \<Sum>i. f n i)" proof - { fix n :: nat have "(\<Sum>i<n. SUP k. f k i) = (SUP k. \<Sum>i<n. f k i)" using assms by (auto intro!: SUPR_ereal_setsum[symmetric]) } note * = this show ?thesis using assms apply (subst (1 2) suminf_ereal_eq_SUPR) unfolding * apply (auto intro!: SUP_upper2) apply (subst SUP_commute) .. qed end