| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45694 | 4a8743618257 |
| child 49674 | dbadb4d03cbc |
| permissions | -rw-r--r-- |
(* Title: HOL/Multivariate_Analysis/Finite_Cartesian_Product.thy Author: Amine Chaieb, University of Cambridge *) header {* Definition of finite Cartesian product types. *} theory Finite_Cartesian_Product imports Euclidean_Space L2_Norm "~~/src/HOL/Library/Numeral_Type" begin subsection {* Finite Cartesian products, with indexing and lambdas. *} typedef (open) ('a, 'b) vec = "UNIV :: (('b::finite) \<Rightarrow> 'a) set" morphisms vec_nth vec_lambda .. notation vec_nth (infixl "$" 90) and vec_lambda (binder "\<chi>" 10) (* Translate "'b ^ 'n" into "'b ^ ('n :: finite)". When 'n has already more than the finite type class write "vec 'b 'n" *) syntax "_finite_vec" :: "type \<Rightarrow> type \<Rightarrow> type" ("(_ ^/ _)" [15, 16] 15) parse_translation {* let fun vec t u = Syntax.const @{type_syntax vec} $ t $ u; fun finite_vec_tr [t, u as Free (x, _)] = if Lexicon.is_tid x then vec t (Syntax.const @{syntax_const "_ofsort"} $ u $ Syntax.const @{class_syntax finite}) else vec t u | finite_vec_tr [t, u] = vec t u in [(@{syntax_const "_finite_vec"}, finite_vec_tr)] end *} lemma vec_eq_iff: "(x = y) \<longleftrightarrow> (\<forall>i. x$i = y$i)" by (simp add: vec_nth_inject [symmetric] fun_eq_iff) lemma vec_lambda_beta [simp]: "vec_lambda g $ i = g i" by (simp add: vec_lambda_inverse) lemma vec_lambda_unique: "(\<forall>i. f$i = g i) \<longleftrightarrow> vec_lambda g = f" by (auto simp add: vec_eq_iff) lemma vec_lambda_eta: "(\<chi> i. (g$i)) = g" by (simp add: vec_eq_iff) subsection {* Group operations and class instances *} instantiation vec :: (zero, finite) zero begin definition "0 \<equiv> (\<chi> i. 0)" instance .. end instantiation vec :: (plus, finite) plus begin definition "op + \<equiv> (\<lambda> x y. (\<chi> i. x$i + y$i))" instance .. end instantiation vec :: (minus, finite) minus begin definition "op - \<equiv> (\<lambda> x y. (\<chi> i. x$i - y$i))" instance .. end instantiation vec :: (uminus, finite) uminus begin definition "uminus \<equiv> (\<lambda> x. (\<chi> i. - (x$i)))" instance .. end lemma zero_index [simp]: "0 $ i = 0" unfolding zero_vec_def by simp lemma vector_add_component [simp]: "(x + y)$i = x$i + y$i" unfolding plus_vec_def by simp lemma vector_minus_component [simp]: "(x - y)$i = x$i - y$i" unfolding minus_vec_def by simp lemma vector_uminus_component [simp]: "(- x)$i = - (x$i)" unfolding uminus_vec_def by simp instance vec :: (semigroup_add, finite) semigroup_add by default (simp add: vec_eq_iff add_assoc) instance vec :: (ab_semigroup_add, finite) ab_semigroup_add by default (simp add: vec_eq_iff add_commute) instance vec :: (monoid_add, finite) monoid_add by default (simp_all add: vec_eq_iff) instance vec :: (comm_monoid_add, finite) comm_monoid_add by default (simp add: vec_eq_iff) instance vec :: (cancel_semigroup_add, finite) cancel_semigroup_add by default (simp_all add: vec_eq_iff) instance vec :: (cancel_ab_semigroup_add, finite) cancel_ab_semigroup_add by default (simp add: vec_eq_iff) instance vec :: (cancel_comm_monoid_add, finite) cancel_comm_monoid_add .. instance vec :: (group_add, finite) group_add by default (simp_all add: vec_eq_iff diff_minus) instance vec :: (ab_group_add, finite) ab_group_add by default (simp_all add: vec_eq_iff) subsection {* Real vector space *} instantiation vec :: (real_vector, finite) real_vector begin definition "scaleR \<equiv> (\<lambda> r x. (\<chi> i. scaleR r (x$i)))" lemma vector_scaleR_component [simp]: "(scaleR r x)$i = scaleR r (x$i)" unfolding scaleR_vec_def by simp instance by default (simp_all add: vec_eq_iff scaleR_left_distrib scaleR_right_distrib) end subsection {* Topological space *} instantiation vec :: (topological_space, finite) topological_space begin definition "open (S :: ('a ^ 'b) set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>A. (\<forall>i. open (A i) \<and> x$i \<in> A i) \<and> (\<forall>y. (\<forall>i. y$i \<in> A i) \<longrightarrow> y \<in> S))" instance proof show "open (UNIV :: ('a ^ 'b) set)" unfolding open_vec_def by auto next fix S T :: "('a ^ 'b) set" assume "open S" "open T" thus "open (S \<inter> T)" unfolding open_vec_def apply clarify apply (drule (1) bspec)+ apply (clarify, rename_tac Sa Ta) apply (rule_tac x="\<lambda>i. Sa i \<inter> Ta i" in exI) apply (simp add: open_Int) done next fix K :: "('a ^ 'b) set set" assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)" unfolding open_vec_def apply clarify apply (drule (1) bspec) apply (drule (1) bspec) apply clarify apply (rule_tac x=A in exI) apply fast done qed end lemma open_vector_box: "\<forall>i. open (S i) \<Longrightarrow> open {x. \<forall>i. x $ i \<in> S i}" unfolding open_vec_def by auto lemma open_vimage_vec_nth: "open S \<Longrightarrow> open ((\<lambda>x. x $ i) -` S)" unfolding open_vec_def apply clarify apply (rule_tac x="\<lambda>k. if k = i then S else UNIV" in exI, simp) done lemma closed_vimage_vec_nth: "closed S \<Longrightarrow> closed ((\<lambda>x. x $ i) -` S)" unfolding closed_open vimage_Compl [symmetric] by (rule open_vimage_vec_nth) lemma closed_vector_box: "\<forall>i. closed (S i) \<Longrightarrow> closed {x. \<forall>i. x $ i \<in> S i}" proof - have "{x. \<forall>i. x $ i \<in> S i} = (\<Inter>i. (\<lambda>x. x $ i) -` S i)" by auto thus "\<forall>i. closed (S i) \<Longrightarrow> closed {x. \<forall>i. x $ i \<in> S i}" by (simp add: closed_INT closed_vimage_vec_nth) qed lemma tendsto_vec_nth [tendsto_intros]: assumes "((\<lambda>x. f x) ---> a) net" shows "((\<lambda>x. f x $ i) ---> a $ i) net" proof (rule topological_tendstoI) fix S assume "open S" "a $ i \<in> S" then have "open ((\<lambda>y. y $ i) -` S)" "a \<in> ((\<lambda>y. y $ i) -` S)" by (simp_all add: open_vimage_vec_nth) with assms have "eventually (\<lambda>x. f x \<in> (\<lambda>y. y $ i) -` S) net" by (rule topological_tendstoD) then show "eventually (\<lambda>x. f x $ i \<in> S) net" by simp qed lemma isCont_vec_nth [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x $ i) a" unfolding isCont_def by (rule tendsto_vec_nth) lemma eventually_Ball_finite: (* TODO: move *) assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net" shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net" using assms by (induct set: finite, simp, simp add: eventually_conj) lemma eventually_all_finite: (* TODO: move *) fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool" assumes "\<And>y. eventually (\<lambda>x. P x y) net" shows "eventually (\<lambda>x. \<forall>y. P x y) net" using eventually_Ball_finite [of UNIV P] assms by simp lemma vec_tendstoI: assumes "\<And>i. ((\<lambda>x. f x $ i) ---> a $ i) net" shows "((\<lambda>x. f x) ---> a) net" proof (rule topological_tendstoI) fix S assume "open S" and "a \<in> S" then obtain A where A: "\<And>i. open (A i)" "\<And>i. a $ i \<in> A i" and S: "\<And>y. \<forall>i. y $ i \<in> A i \<Longrightarrow> y \<in> S" unfolding open_vec_def by metis have "\<And>i. eventually (\<lambda>x. f x $ i \<in> A i) net" using assms A by (rule topological_tendstoD) hence "eventually (\<lambda>x. \<forall>i. f x $ i \<in> A i) net" by (rule eventually_all_finite) thus "eventually (\<lambda>x. f x \<in> S) net" by (rule eventually_elim1, simp add: S) qed lemma tendsto_vec_lambda [tendsto_intros]: assumes "\<And>i. ((\<lambda>x. f x i) ---> a i) net" shows "((\<lambda>x. \<chi> i. f x i) ---> (\<chi> i. a i)) net" using assms by (simp add: vec_tendstoI) lemma open_image_vec_nth: assumes "open S" shows "open ((\<lambda>x. x $ i) ` S)" proof (rule openI) fix a assume "a \<in> (\<lambda>x. x $ i) ` S" then obtain z where "a = z $ i" and "z \<in> S" .. then obtain A where A: "\<forall>i. open (A i) \<and> z $ i \<in> A i" and S: "\<forall>y. (\<forall>i. y $ i \<in> A i) \<longrightarrow> y \<in> S" using `open S` unfolding open_vec_def by auto hence "A i \<subseteq> (\<lambda>x. x $ i) ` S" by (clarsimp, rule_tac x="\<chi> j. if j = i then x else z $ j" in image_eqI, simp_all) hence "open (A i) \<and> a \<in> A i \<and> A i \<subseteq> (\<lambda>x. x $ i) ` S" using A `a = z $ i` by simp then show "\<exists>T. open T \<and> a \<in> T \<and> T \<subseteq> (\<lambda>x. x $ i) ` S" by - (rule exI) qed instance vec :: (perfect_space, finite) perfect_space proof fix x :: "'a ^ 'b" show "\<not> open {x}" proof assume "open {x}" hence "\<forall>i. open ((\<lambda>x. x $ i) ` {x})" by (fast intro: open_image_vec_nth) hence "\<forall>i. open {x $ i}" by simp thus "False" by (simp add: not_open_singleton) qed qed subsection {* Metric space *} instantiation vec :: (metric_space, finite) metric_space begin definition "dist x y = setL2 (\<lambda>i. dist (x$i) (y$i)) UNIV" lemma dist_vec_nth_le: "dist (x $ i) (y $ i) \<le> dist x y" unfolding dist_vec_def by (rule member_le_setL2) simp_all instance proof fix x y :: "'a ^ 'b" show "dist x y = 0 \<longleftrightarrow> x = y" unfolding dist_vec_def by (simp add: setL2_eq_0_iff vec_eq_iff) next fix x y z :: "'a ^ 'b" show "dist x y \<le> dist x z + dist y z" unfolding dist_vec_def apply (rule order_trans [OF _ setL2_triangle_ineq]) apply (simp add: setL2_mono dist_triangle2) done next fix S :: "('a ^ 'b) set" show "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" proof assume "open S" show "\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S" proof fix x assume "x \<in> S" obtain A where A: "\<forall>i. open (A i)" "\<forall>i. x $ i \<in> A i" and S: "\<forall>y. (\<forall>i. y $ i \<in> A i) \<longrightarrow> y \<in> S" using `open S` and `x \<in> S` unfolding open_vec_def by metis have "\<forall>i\<in>UNIV. \<exists>r>0. \<forall>y. dist y (x $ i) < r \<longrightarrow> y \<in> A i" using A unfolding open_dist by simp hence "\<exists>r. \<forall>i\<in>UNIV. 0 < r i \<and> (\<forall>y. dist y (x $ i) < r i \<longrightarrow> y \<in> A i)" by (rule finite_set_choice [OF finite]) then obtain r where r1: "\<forall>i. 0 < r i" and r2: "\<forall>i y. dist y (x $ i) < r i \<longrightarrow> y \<in> A i" by fast have "0 < Min (range r) \<and> (\<forall>y. dist y x < Min (range r) \<longrightarrow> y \<in> S)" by (simp add: r1 r2 S le_less_trans [OF dist_vec_nth_le]) thus "\<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S" .. qed next assume *: "\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S" show "open S" proof (unfold open_vec_def, rule) fix x assume "x \<in> S" then obtain e where "0 < e" and S: "\<forall>y. dist y x < e \<longrightarrow> y \<in> S" using * by fast def r \<equiv> "\<lambda>i::'b. e / sqrt (of_nat CARD('b))" from `0 < e` have r: "\<forall>i. 0 < r i" unfolding r_def by (simp_all add: divide_pos_pos) from `0 < e` have e: "e = setL2 r UNIV" unfolding r_def by (simp add: setL2_constant) def A \<equiv> "\<lambda>i. {y. dist (x $ i) y < r i}" have "\<forall>i. open (A i) \<and> x $ i \<in> A i" unfolding A_def by (simp add: open_ball r) moreover have "\<forall>y. (\<forall>i. y $ i \<in> A i) \<longrightarrow> y \<in> S" by (simp add: A_def S dist_vec_def e setL2_strict_mono dist_commute) ultimately show "\<exists>A. (\<forall>i. open (A i) \<and> x $ i \<in> A i) \<and> (\<forall>y. (\<forall>i. y $ i \<in> A i) \<longrightarrow> y \<in> S)" by metis qed qed qed end lemma Cauchy_vec_nth: "Cauchy (\<lambda>n. X n) \<Longrightarrow> Cauchy (\<lambda>n. X n $ i)" unfolding Cauchy_def by (fast intro: le_less_trans [OF dist_vec_nth_le]) lemma vec_CauchyI: fixes X :: "nat \<Rightarrow> 'a::metric_space ^ 'n" assumes X: "\<And>i. Cauchy (\<lambda>n. X n $ i)" shows "Cauchy (\<lambda>n. X n)" proof (rule metric_CauchyI) fix r :: real assume "0 < r" then have "0 < r / of_nat CARD('n)" (is "0 < ?s") by (simp add: divide_pos_pos) def N \<equiv> "\<lambda>i. LEAST N. \<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m $ i) (X n $ i) < ?s" def M \<equiv> "Max (range N)" have "\<And>i. \<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m $ i) (X n $ i) < ?s" using X `0 < ?s` by (rule metric_CauchyD) hence "\<And>i. \<forall>m\<ge>N i. \<forall>n\<ge>N i. dist (X m $ i) (X n $ i) < ?s" unfolding N_def by (rule LeastI_ex) hence M: "\<And>i. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m $ i) (X n $ i) < ?s" unfolding M_def by simp { fix m n :: nat assume "M \<le> m" "M \<le> n" have "dist (X m) (X n) = setL2 (\<lambda>i. dist (X m $ i) (X n $ i)) UNIV" unfolding dist_vec_def .. also have "\<dots> \<le> setsum (\<lambda>i. dist (X m $ i) (X n $ i)) UNIV" by (rule setL2_le_setsum [OF zero_le_dist]) also have "\<dots> < setsum (\<lambda>i::'n. ?s) UNIV" by (rule setsum_strict_mono, simp_all add: M `M \<le> m` `M \<le> n`) also have "\<dots> = r" by simp finally have "dist (X m) (X n) < r" . } hence "\<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < r" by simp then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < r" .. qed instance vec :: (complete_space, finite) complete_space proof fix X :: "nat \<Rightarrow> 'a ^ 'b" assume "Cauchy X" have "\<And>i. (\<lambda>n. X n $ i) ----> lim (\<lambda>n. X n $ i)" using Cauchy_vec_nth [OF `Cauchy X`] by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff) hence "X ----> vec_lambda (\<lambda>i. lim (\<lambda>n. X n $ i))" by (simp add: vec_tendstoI) then show "convergent X" by (rule convergentI) qed subsection {* Normed vector space *} instantiation vec :: (real_normed_vector, finite) real_normed_vector begin definition "norm x = setL2 (\<lambda>i. norm (x$i)) UNIV" definition "sgn (x::'a^'b) = scaleR (inverse (norm x)) x" instance proof fix a :: real and x y :: "'a ^ 'b" show "0 \<le> norm x" unfolding norm_vec_def by (rule setL2_nonneg) show "norm x = 0 \<longleftrightarrow> x = 0" unfolding norm_vec_def by (simp add: setL2_eq_0_iff vec_eq_iff) show "norm (x + y) \<le> norm x + norm y" unfolding norm_vec_def apply (rule order_trans [OF _ setL2_triangle_ineq]) apply (simp add: setL2_mono norm_triangle_ineq) done show "norm (scaleR a x) = \<bar>a\<bar> * norm x" unfolding norm_vec_def by (simp add: setL2_right_distrib) show "sgn x = scaleR (inverse (norm x)) x" by (rule sgn_vec_def) show "dist x y = norm (x - y)" unfolding dist_vec_def norm_vec_def by (simp add: dist_norm) qed end lemma norm_nth_le: "norm (x $ i) \<le> norm x" unfolding norm_vec_def by (rule member_le_setL2) simp_all lemma bounded_linear_vec_nth: "bounded_linear (\<lambda>x. x $ i)" apply default apply (rule vector_add_component) apply (rule vector_scaleR_component) apply (rule_tac x="1" in exI, simp add: norm_nth_le) done instance vec :: (banach, finite) banach .. subsection {* Inner product space *} instantiation vec :: (real_inner, finite) real_inner begin definition "inner x y = setsum (\<lambda>i. inner (x$i) (y$i)) UNIV" instance proof fix r :: real and x y z :: "'a ^ 'b" show "inner x y = inner y x" unfolding inner_vec_def by (simp add: inner_commute) show "inner (x + y) z = inner x z + inner y z" unfolding inner_vec_def by (simp add: inner_add_left setsum_addf) show "inner (scaleR r x) y = r * inner x y" unfolding inner_vec_def by (simp add: setsum_right_distrib) show "0 \<le> inner x x" unfolding inner_vec_def by (simp add: setsum_nonneg) show "inner x x = 0 \<longleftrightarrow> x = 0" unfolding inner_vec_def by (simp add: vec_eq_iff setsum_nonneg_eq_0_iff) show "norm x = sqrt (inner x x)" unfolding inner_vec_def norm_vec_def setL2_def by (simp add: power2_norm_eq_inner) qed end subsection {* Euclidean space *} text {* Vectors pointing along a single axis. *} definition "axis k x = (\<chi> i. if i = k then x else 0)" lemma axis_nth [simp]: "axis i x $ i = x" unfolding axis_def by simp lemma axis_eq_axis: "axis i x = axis j y \<longleftrightarrow> x = y \<and> i = j \<or> x = 0 \<and> y = 0" unfolding axis_def vec_eq_iff by auto lemma inner_axis_axis: "inner (axis i x) (axis j y) = (if i = j then inner x y else 0)" unfolding inner_vec_def apply (cases "i = j") apply clarsimp apply (subst setsum_diff1' [where a=j], simp_all) apply (rule setsum_0', simp add: axis_def) apply (rule setsum_0', simp add: axis_def) done lemma setsum_single: assumes "finite A" and "k \<in> A" and "f k = y" assumes "\<And>i. i \<in> A \<Longrightarrow> i \<noteq> k \<Longrightarrow> f i = 0" shows "(\<Sum>i\<in>A. f i) = y" apply (subst setsum_diff1' [OF assms(1,2)]) apply (simp add: setsum_0' assms(3,4)) done lemma inner_axis: "inner x (axis i y) = inner (x $ i) y" unfolding inner_vec_def apply (rule_tac k=i in setsum_single) apply simp_all apply (simp add: axis_def) done text {* A bijection between @{text "'n::finite"} and @{text "{..<CARD('n)}"} *} definition vec_bij_nat :: "nat \<Rightarrow> ('n::finite)" where "vec_bij_nat = (SOME p. bij_betw p {..<CARD('n)} (UNIV::'n set) )" abbreviation "\<pi> \<equiv> vec_bij_nat" definition "\<pi>' = inv_into {..<CARD('n)} (\<pi>::nat \<Rightarrow> ('n::finite))" lemma bij_betw_pi: "bij_betw \<pi> {..<CARD('n::finite)} (UNIV::('n::finite) set)" using ex_bij_betw_nat_finite[of "UNIV::'n set"] by (auto simp: vec_bij_nat_def atLeast0LessThan intro!: someI_ex[of "\<lambda>x. bij_betw x {..<CARD('n)} (UNIV::'n set)"]) lemma bij_betw_pi'[intro]: "bij_betw \<pi>' (UNIV::'n set) {..<CARD('n::finite)}" using bij_betw_inv_into[OF bij_betw_pi] unfolding \<pi>'_def by auto lemma pi'_inj[intro]: "inj \<pi>'" using bij_betw_pi' unfolding bij_betw_def by auto lemma pi'_range[intro]: "\<And>i::'n. \<pi>' i < CARD('n::finite)" using bij_betw_pi' unfolding bij_betw_def by auto lemma \<pi>\<pi>'[simp]: "\<And>i::'n::finite. \<pi> (\<pi>' i) = i" using bij_betw_pi by (auto intro!: f_inv_into_f simp: \<pi>'_def bij_betw_def) lemma \<pi>'\<pi>[simp]: "\<And>i. i\<in>{..<CARD('n::finite)} \<Longrightarrow> \<pi>' (\<pi> i::'n) = i" using bij_betw_pi by (auto intro!: inv_into_f_eq simp: \<pi>'_def bij_betw_def) lemma \<pi>\<pi>'_alt[simp]: "\<And>i. i<CARD('n::finite) \<Longrightarrow> \<pi>' (\<pi> i::'n) = i" by auto lemma \<pi>_inj_on: "inj_on (\<pi>::nat\<Rightarrow>'n::finite) {..<CARD('n)}" using bij_betw_pi[where 'n='n] by (simp add: bij_betw_def) instantiation vec :: (euclidean_space, finite) euclidean_space begin definition "Basis = (\<Union>i. \<Union>u\<in>Basis. {axis i u})" definition "dimension (t :: ('a ^ 'b) itself) = CARD('b) * DIM('a)" definition "basis i = (if i < (CARD('b) * DIM('a)) then axis (\<pi>(i div DIM('a))) (basis (i mod DIM('a))) else 0)" lemma basis_eq: assumes "i < CARD('b)" and "j < DIM('a)" shows "basis (j + i * DIM('a)) = axis (\<pi> i) (basis j)" proof - have "j + i * DIM('a) < DIM('a) * (i + 1)" using assms by (auto simp: field_simps) also have "\<dots> \<le> DIM('a) * CARD('b)" using assms unfolding mult_le_cancel1 by auto finally show ?thesis unfolding basis_vec_def using assms by (auto simp: vec_eq_iff not_less field_simps) qed lemma basis_eq_pi': assumes "j < DIM('a)" shows "basis (j + \<pi>' i * DIM('a)) $ k = (if k = i then basis j else 0)" apply (subst basis_eq) using pi'_range assms by (simp_all add: axis_def) lemma split_times_into_modulo[consumes 1]: fixes k :: nat assumes "k < A * B" obtains i j where "i < A" and "j < B" and "k = j + i * B" proof have "A * B \<noteq> 0" proof assume "A * B = 0" with assms show False by simp qed hence "0 < B" by auto thus "k mod B < B" using `0 < B` by auto next have "k div B * B \<le> k div B * B + k mod B" by (rule le_add1) also have "... < A * B" using assms by simp finally show "k div B < A" by auto qed simp lemma linear_less_than_times: fixes i j A B :: nat assumes "i < B" "j < A" shows "j + i * A < B * A" proof - have "i * A + j < (Suc i)*A" using `j < A` by simp also have "\<dots> \<le> B * A" using `i < B` unfolding mult_le_cancel2 by simp finally show ?thesis by simp qed lemma DIM_cart[simp]: "DIM('a^'b) = CARD('b) * DIM('a)" by (rule dimension_vec_def) instance proof show "(Basis :: ('a ^ 'b) set) \<noteq> {}" unfolding Basis_vec_def by simp next show "finite (Basis :: ('a ^ 'b) set)" unfolding Basis_vec_def by simp next fix u v :: "'a ^ 'b" assume "u \<in> Basis" and "v \<in> Basis" thus "inner u v = (if u = v then 1 else 0)" unfolding Basis_vec_def by (auto simp add: inner_axis_axis axis_eq_axis inner_Basis) next fix x :: "'a ^ 'b" show "(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> x = 0" unfolding Basis_vec_def by (simp add: inner_axis euclidean_all_zero_iff vec_eq_iff) next show "DIM('a ^ 'b) = card (Basis :: ('a ^ 'b) set)" unfolding Basis_vec_def dimension_vec_def dimension_def by (simp add: card_UN_disjoint [unfolded disjoint_iff_not_equal] axis_eq_axis nonzero_Basis) next show "basis ` {..<DIM('a ^ 'b)} = (Basis :: ('a ^ 'b) set)" unfolding Basis_vec_def apply auto apply (erule split_times_into_modulo) apply (simp add: basis_eq axis_eq_axis) apply (erule Basis_elim) apply (simp add: image_def basis_vec_def axis_eq_axis) apply (rule rev_bexI, simp) apply (erule linear_less_than_times [OF pi'_range]) apply simp done next show "basis ` {DIM('a ^ 'b)..} = {0::'a ^ 'b}" by (auto simp add: image_def basis_vec_def) qed end end