| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 44375 | dfc2e722fe47 |
| child 58889 | 5b7a9633cfa8 |
| permissions | -rw-r--r-- |
(* Title: HOL/NanoJava/Example.thy Author: David von Oheimb Copyright 2001 Technische Universitaet Muenchen *) header "Example" theory Example imports Equivalence begin text {* \begin{verbatim} class Nat { Nat pred; Nat suc() { Nat n = new Nat(); n.pred = this; return n; } Nat eq(Nat n) { if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred); else return n.pred; // false else if (n.pred != null) return this.pred; // false else return this.suc(); // true } Nat add(Nat n) { if (this.pred != null) return this.pred.add(n.suc()); else return n; } public static void main(String[] args) // test x+1=1+x { Nat one = new Nat().suc(); Nat x = new Nat().suc().suc().suc().suc(); Nat ok = x.suc().eq(x.add(one)); System.out.println(ok != null); } } \end{verbatim} *} axiomatization where This_neq_Par [simp]: "This \<noteq> Par" and Res_neq_This [simp]: "Res \<noteq> This" subsection "Program representation" axiomatization N :: cname ("Nat") (* with mixfix because of clash with NatDef.Nat *) and pred :: fname and suc add :: mname and any :: vname abbreviation dummy :: expr ("<>") where "<> == LAcc any" abbreviation one :: expr where "one == {Nat}new Nat..suc(<>)" text {* The following properties could be derived from a more complete program model, which we leave out for laziness. *} axiomatization where Nat_no_subclasses [simp]: "D \<preceq>C Nat = (D=Nat)" axiomatization where method_Nat_add [simp]: "method Nat add = Some \<lparr> par=Class Nat, res=Class Nat, lcl=[], bdy= If((LAcc This..pred)) (Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>))) Else Res :== LAcc Par \<rparr>" axiomatization where method_Nat_suc [simp]: "method Nat suc = Some \<lparr> par=NT, res=Class Nat, lcl=[], bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This \<rparr>" axiomatization where field_Nat [simp]: "field Nat = empty(pred\<mapsto>Class Nat)" lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s" by (simp add: init_locs_def init_vars_def) lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s" by (simp add: init_locs_def init_vars_def) lemma upd_obj_new_obj_Nat [simp]: "upd_obj a pred v (new_obj a Nat s) = hupd(a\<mapsto>(Nat, empty(pred\<mapsto>v))) s" by (simp add: new_obj_def init_vars_def upd_obj_def Let_def) subsection "``atleast'' relation for interpretation of Nat ``values''" primrec Nat_atleast :: "state \<Rightarrow> val \<Rightarrow> nat \<Rightarrow> bool" ("_:_ \<ge> _" [51, 51, 51] 50) where "s:x\<ge>0 = (x\<noteq>Null)" | "s:x\<ge>Suc n = (\<exists>a. x=Addr a \<and> heap s a \<noteq> None \<and> s:get_field s a pred\<ge>n)" lemma Nat_atleast_lupd [rule_format, simp]: "\<forall>s v::val. lupd(x\<mapsto>y) s:v \<ge> n = (s:v \<ge> n)" apply (induct n) by auto lemma Nat_atleast_set_locs [rule_format, simp]: "\<forall>s v::val. set_locs l s:v \<ge> n = (s:v \<ge> n)" apply (induct n) by auto lemma Nat_atleast_del_locs [rule_format, simp]: "\<forall>s v::val. del_locs s:v \<ge> n = (s:v \<ge> n)" apply (induct n) by auto lemma Nat_atleast_NullD [rule_format]: "s:Null \<ge> n \<longrightarrow> False" apply (induct n) by auto lemma Nat_atleast_pred_NullD [rule_format]: "Null = get_field s a pred \<Longrightarrow> s:Addr a \<ge> n \<longrightarrow> n = 0" apply (induct n) by (auto dest: Nat_atleast_NullD) lemma Nat_atleast_mono [rule_format]: "\<forall>a. s:get_field s a pred \<ge> n \<longrightarrow> heap s a \<noteq> None \<longrightarrow> s:Addr a \<ge> n" apply (induct n) by auto lemma Nat_atleast_newC [rule_format]: "heap s aa = None \<Longrightarrow> \<forall>v::val. s:v \<ge> n \<longrightarrow> hupd(aa\<mapsto>obj) s:v \<ge> n" apply (induct n) apply auto apply (case_tac "aa=a") apply auto apply (tactic "smp_tac 1 1") apply (case_tac "aa=a") apply auto done subsection "Proof(s) using the Hoare logic" theorem add_homomorph_lb: "{} \<turnstile> {\<lambda>s. s:s<This> \<ge> X \<and> s:s<Par> \<ge> Y} Meth(Nat,add) {\<lambda>s. s:s<Res> \<ge> X+Y}" apply (rule hoare_ehoare.Meth) (* 1 *) apply clarsimp apply (rule_tac P'= "\<lambda>Z s. (s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z) \<and> D=Nat" and Q'= "\<lambda>Z s. s:s<Res> \<ge> fst Z+snd Z" in AxSem.Conseq) prefer 2 apply (clarsimp simp add: init_locs_def init_vars_def) apply rule apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) apply (rule_tac P = "\<lambda>Z Cm s. s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z" in AxSem.Impl1) apply (clarsimp simp add: body_def) (* 4 *) apply (rename_tac n m) apply (rule_tac Q = "\<lambda>v s. (s:s<This> \<ge> n \<and> s:s<Par> \<ge> m) \<and> (\<exists>a. s<This> = Addr a \<and> v = get_field s a pred)" in hoare_ehoare.Cond) apply (rule hoare_ehoare.FAcc) apply (rule eConseq1) apply (rule hoare_ehoare.LAcc) apply fast apply auto prefer 2 apply (rule hoare_ehoare.LAss) apply (rule eConseq1) apply (rule hoare_ehoare.LAcc) apply (auto dest: Nat_atleast_pred_NullD) apply (rule hoare_ehoare.LAss) apply (rule_tac Q = "\<lambda>v s. (\<forall>m. n = Suc m \<longrightarrow> s:v \<ge> m) \<and> s:s<Par> \<ge> m" and R = "\<lambda>T P s. (\<forall>m. n = Suc m \<longrightarrow> s:T \<ge> m) \<and> s:P \<ge> Suc m" in hoare_ehoare.Call) (* 13 *) apply (rule hoare_ehoare.FAcc) apply (rule eConseq1) apply (rule hoare_ehoare.LAcc) apply clarify apply (drule sym, rotate_tac -1, frule (1) trans) apply simp prefer 2 apply clarsimp apply (rule hoare_ehoare.Meth) (* 17 *) apply clarsimp apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) apply (rule AxSem.Conseq) apply rule apply (rule hoare_ehoare.Asm) (* 20 *) apply (rule_tac a = "((case n of 0 \<Rightarrow> 0 | Suc m \<Rightarrow> m),m+1)" in UN_I, rule+) apply (clarsimp split add: nat.split_asm dest!: Nat_atleast_mono) apply rule apply (rule hoare_ehoare.Call) (* 21 *) apply (rule hoare_ehoare.LAcc) apply rule apply (rule hoare_ehoare.LAcc) apply clarify apply (rule hoare_ehoare.Meth) (* 24 *) apply clarsimp apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) apply (rule AxSem.Impl1) apply (clarsimp simp add: body_def) apply (rule hoare_ehoare.Comp) (* 26 *) prefer 2 apply (rule hoare_ehoare.FAss) prefer 2 apply rule apply (rule hoare_ehoare.LAcc) apply (rule hoare_ehoare.LAcc) apply (rule hoare_ehoare.LAss) apply (rule eConseq1) apply (rule hoare_ehoare.NewC) (* 32 *) apply (auto dest!: new_AddrD elim: Nat_atleast_newC) done end