| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 42463 | f270e3e18be5 |
| child 55466 | 786edc984c98 |
| permissions | -rw-r--r-- |
(* Title: HOL/NanoJava/State.thy Author: David von Oheimb Copyright 2001 Technische Universitaet Muenchen *) header "Program State" theory State imports TypeRel begin definition body :: "cname \<times> mname => stmt" where "body \<equiv> \<lambda>(C,m). bdy (the (method C m))" text {* Locations, i.e.\ abstract references to objects *} typedecl loc datatype val = Null --{* null reference *} | Addr loc --{* address, i.e. location of object *} type_synonym fields = "(fname \<rightharpoonup> val)" type_synonym obj = "cname \<times> fields" translations (type) "fields" \<leftharpoondown> (type) "fname => val option" (type) "obj" \<leftharpoondown> (type) "cname \<times> fields" definition init_vars :: "('a \<rightharpoonup> 'b) => ('a \<rightharpoonup> val)" where "init_vars m == Option.map (\<lambda>T. Null) o m" text {* private: *} type_synonym heap = "loc \<rightharpoonup> obj" type_synonym locals = "vname \<rightharpoonup> val" text {* private: *} record state = heap :: heap locals :: locals translations (type) "heap" \<leftharpoondown> (type) "loc => obj option" (type) "locals" \<leftharpoondown> (type) "vname => val option" (type) "state" \<leftharpoondown> (type) "(|heap :: heap, locals :: locals|)" definition del_locs :: "state => state" where "del_locs s \<equiv> s (| locals := empty |)" definition init_locs :: "cname => mname => state => state" where "init_locs C m s \<equiv> s (| locals := locals s ++ init_vars (map_of (lcl (the (method C m)))) |)" text {* The first parameter of @{term set_locs} is of type @{typ state} rather than @{typ locals} in order to keep @{typ locals} private.*} definition set_locs :: "state => state => state" where "set_locs s s' \<equiv> s' (| locals := locals s |)" definition get_local :: "state => vname => val" ("_<_>" [99,0] 99) where "get_local s x \<equiv> the (locals s x)" --{* local function: *} definition get_obj :: "state => loc => obj" where "get_obj s a \<equiv> the (heap s a)" definition obj_class :: "state => loc => cname" where "obj_class s a \<equiv> fst (get_obj s a)" definition get_field :: "state => loc => fname => val" where "get_field s a f \<equiv> the (snd (get_obj s a) f)" --{* local function: *} definition hupd :: "loc => obj => state => state" ("hupd'(_|->_')" [10,10] 1000) where "hupd a obj s \<equiv> s (| heap := ((heap s)(a\<mapsto>obj))|)" definition lupd :: "vname => val => state => state" ("lupd'(_|->_')" [10,10] 1000) where "lupd x v s \<equiv> s (| locals := ((locals s)(x\<mapsto>v ))|)" notation (xsymbols) hupd ("hupd'(_\<mapsto>_')" [10,10] 1000) and lupd ("lupd'(_\<mapsto>_')" [10,10] 1000) definition new_obj :: "loc => cname => state => state" where "new_obj a C \<equiv> hupd(a\<mapsto>(C,init_vars (field C)))" definition upd_obj :: "loc => fname => val => state => state" where "upd_obj a f v s \<equiv> let (C,fs) = the (heap s a) in hupd(a\<mapsto>(C,fs(f\<mapsto>v))) s" definition new_Addr :: "state => val" where "new_Addr s == SOME v. (\<exists>a. v = Addr a \<and> (heap s) a = None) | v = Null" subsection "Properties not used in the meta theory" lemma locals_upd_id [simp]: "s\<lparr>locals := locals s\<rparr> = s" by simp lemma lupd_get_local_same [simp]: "lupd(x\<mapsto>v) s<x> = v" by (simp add: lupd_def get_local_def) lemma lupd_get_local_other [simp]: "x \<noteq> y \<Longrightarrow> lupd(x\<mapsto>v) s<y> = s<y>" apply (drule not_sym) by (simp add: lupd_def get_local_def) lemma get_field_lupd [simp]: "get_field (lupd(x\<mapsto>y) s) a f = get_field s a f" by (simp add: lupd_def get_field_def get_obj_def) lemma get_field_set_locs [simp]: "get_field (set_locs l s) a f = get_field s a f" by (simp add: lupd_def get_field_def set_locs_def get_obj_def) lemma get_field_del_locs [simp]: "get_field (del_locs s) a f = get_field s a f" by (simp add: lupd_def get_field_def del_locs_def get_obj_def) lemma new_obj_get_local [simp]: "new_obj a C s <x> = s<x>" by (simp add: new_obj_def hupd_def get_local_def) lemma heap_lupd [simp]: "heap (lupd(x\<mapsto>y) s) = heap s" by (simp add: lupd_def) lemma heap_hupd_same [simp]: "heap (hupd(a\<mapsto>obj) s) a = Some obj" by (simp add: hupd_def) lemma heap_hupd_other [simp]: "aa \<noteq> a \<Longrightarrow> heap (hupd(aa\<mapsto>obj) s) a = heap s a" apply (drule not_sym) by (simp add: hupd_def) lemma hupd_hupd [simp]: "hupd(a\<mapsto>obj) (hupd(a\<mapsto>obj') s) = hupd(a\<mapsto>obj) s" by (simp add: hupd_def) lemma heap_del_locs [simp]: "heap (del_locs s) = heap s" by (simp add: del_locs_def) lemma heap_set_locs [simp]: "heap (set_locs l s) = heap s" by (simp add: set_locs_def) lemma hupd_lupd [simp]: "hupd(a\<mapsto>obj) (lupd(x\<mapsto>y) s) = lupd(x\<mapsto>y) (hupd(a\<mapsto>obj) s)" by (simp add: hupd_def lupd_def) lemma hupd_del_locs [simp]: "hupd(a\<mapsto>obj) (del_locs s) = del_locs (hupd(a\<mapsto>obj) s)" by (simp add: hupd_def del_locs_def) lemma new_obj_lupd [simp]: "new_obj a C (lupd(x\<mapsto>y) s) = lupd(x\<mapsto>y) (new_obj a C s)" by (simp add: new_obj_def) lemma new_obj_del_locs [simp]: "new_obj a C (del_locs s) = del_locs (new_obj a C s)" by (simp add: new_obj_def) lemma upd_obj_lupd [simp]: "upd_obj a f v (lupd(x\<mapsto>y) s) = lupd(x\<mapsto>y) (upd_obj a f v s)" by (simp add: upd_obj_def Let_def split_beta) lemma upd_obj_del_locs [simp]: "upd_obj a f v (del_locs s) = del_locs (upd_obj a f v s)" by (simp add: upd_obj_def Let_def split_beta) lemma get_field_hupd_same [simp]: "get_field (hupd(a\<mapsto>(C, fs)) s) a = the \<circ> fs" apply (rule ext) by (simp add: get_field_def get_obj_def) lemma get_field_hupd_other [simp]: "aa \<noteq> a \<Longrightarrow> get_field (hupd(aa\<mapsto>obj) s) a = get_field s a" apply (rule ext) by (simp add: get_field_def get_obj_def) lemma new_AddrD: "new_Addr s = v \<Longrightarrow> (\<exists>a. v = Addr a \<and> heap s a = None) | v = Null" apply (unfold new_Addr_def) apply (erule subst) apply (rule someI) apply (rule disjI2) apply (rule HOL.refl) done end