| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45605 | a89b4bc311a5 |
| child 55017 | 2df6ad1dbd66 |
| permissions | -rw-r--r-- |
(* Title: HOL/NanoJava/TypeRel.thy Author: David von Oheimb, Technische Universitaet Muenchen *) header "Type relations" theory TypeRel imports Decl "~~/src/HOL/Library/Wfrec" begin text{* Direct subclass relation *} definition subcls1 :: "(cname \<times> cname) set" where "subcls1 \<equiv> {(C,D). C\<noteq>Object \<and> (\<exists>c. class C = Some c \<and> super c=D)}" abbreviation subcls1_syntax :: "[cname, cname] => bool" ("_ <=C1 _" [71,71] 70) where "C <=C1 D == (C,D) \<in> subcls1" abbreviation subcls_syntax :: "[cname, cname] => bool" ("_ <=C _" [71,71] 70) where "C <=C D == (C,D) \<in> subcls1^*" notation (xsymbols) subcls1_syntax ("_ \<prec>C1 _" [71,71] 70) and subcls_syntax ("_ \<preceq>C _" [71,71] 70) subsection "Declarations and properties not used in the meta theory" text{* Widening, viz. method invocation conversion *} inductive widen :: "ty => ty => bool" ("_ \<preceq> _" [71,71] 70) where refl [intro!, simp]: "T \<preceq> T" | subcls: "C\<preceq>C D \<Longrightarrow> Class C \<preceq> Class D" | null [intro!]: "NT \<preceq> R" lemma subcls1D: "C\<prec>C1D \<Longrightarrow> C \<noteq> Object \<and> (\<exists>c. class C = Some c \<and> super c=D)" apply (unfold subcls1_def) apply auto done lemma subcls1I: "\<lbrakk>class C = Some m; super m = D; C \<noteq> Object\<rbrakk> \<Longrightarrow> C\<prec>C1D" apply (unfold subcls1_def) apply auto done lemma subcls1_def2: "subcls1 = (SIGMA C: {C. is_class C} . {D. C\<noteq>Object \<and> super (the (class C)) = D})" apply (unfold subcls1_def is_class_def) apply (auto split:split_if_asm) done lemma finite_subcls1: "finite subcls1" apply(subst subcls1_def2) apply(rule finite_SigmaI [OF finite_is_class]) apply(rule_tac B = "{super (the (class C))}" in finite_subset) apply auto done definition ws_prog :: "bool" where "ws_prog \<equiv> \<forall>(C,c)\<in>set Prog. C\<noteq>Object \<longrightarrow> is_class (super c) \<and> (super c,C)\<notin>subcls1^+" lemma ws_progD: "\<lbrakk>class C = Some c; C\<noteq>Object; ws_prog\<rbrakk> \<Longrightarrow> is_class (super c) \<and> (super c,C)\<notin>subcls1^+" apply (unfold ws_prog_def class_def) apply (drule_tac map_of_SomeD) apply auto done lemma subcls1_irrefl_lemma1: "ws_prog \<Longrightarrow> subcls1^-1 \<inter> subcls1^+ = {}" by (fast dest: subcls1D ws_progD) (* irrefl_tranclI in Transitive_Closure.thy is more general *) lemma irrefl_tranclI': "r^-1 Int r^+ = {} ==> !x. (x, x) ~: r^+" by(blast elim: tranclE dest: trancl_into_rtrancl) lemmas subcls1_irrefl_lemma2 = subcls1_irrefl_lemma1 [THEN irrefl_tranclI'] lemma subcls1_irrefl: "\<lbrakk>(x, y) \<in> subcls1; ws_prog\<rbrakk> \<Longrightarrow> x \<noteq> y" apply (rule irrefl_trancl_rD) apply (rule subcls1_irrefl_lemma2) apply auto done lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI] lemma wf_subcls1: "ws_prog \<Longrightarrow> wf (subcls1\<inverse>)" by (auto intro: finite_acyclic_wf_converse finite_subcls1 subcls1_acyclic) definition class_rec ::"cname \<Rightarrow> (class \<Rightarrow> ('a \<times> 'b) list) \<Rightarrow> ('a \<rightharpoonup> 'b)" where "class_rec \<equiv> wfrec (subcls1\<inverse>) (\<lambda>rec C f. case class C of None \<Rightarrow> undefined | Some m \<Rightarrow> (if C = Object then empty else rec (super m) f) ++ map_of (f m))" lemma class_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> class_rec C f = (if C = Object then empty else class_rec (super m) f) ++ map_of (f m)" apply (drule wf_subcls1) apply (subst def_wfrec[OF class_rec_def], auto) apply (subst cut_apply, auto intro: subcls1I) done --{* Methods of a class, with inheritance and hiding *} definition method :: "cname => (mname \<rightharpoonup> methd)" where "method C \<equiv> class_rec C methods" lemma method_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> method C = (if C=Object then empty else method (super m)) ++ map_of (methods m)" apply (unfold method_def) apply (erule (1) class_rec [THEN trans]); apply simp done --{* Fields of a class, with inheritance and hiding *} definition field :: "cname => (fname \<rightharpoonup> ty)" where "field C \<equiv> class_rec C flds" lemma flds_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> field C = (if C=Object then empty else field (super m)) ++ map_of (flds m)" apply (unfold field_def) apply (erule (1) class_rec [THEN trans]); apply simp done end