| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46324 | e4bccf5ec61e |
| child 46950 | d0181abdbdac |
| permissions | -rw-r--r-- |
(* Title: HOL/Nitpick.thy Author: Jasmin Blanchette, TU Muenchen Copyright 2008, 2009, 2010 Nitpick: Yet another counterexample generator for Isabelle/HOL. *) header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *} theory Nitpick imports Map Quotient SAT Record uses ("Tools/Nitpick/kodkod.ML") ("Tools/Nitpick/kodkod_sat.ML") ("Tools/Nitpick/nitpick_util.ML") ("Tools/Nitpick/nitpick_hol.ML") ("Tools/Nitpick/nitpick_preproc.ML") ("Tools/Nitpick/nitpick_mono.ML") ("Tools/Nitpick/nitpick_scope.ML") ("Tools/Nitpick/nitpick_peephole.ML") ("Tools/Nitpick/nitpick_rep.ML") ("Tools/Nitpick/nitpick_nut.ML") ("Tools/Nitpick/nitpick_kodkod.ML") ("Tools/Nitpick/nitpick_model.ML") ("Tools/Nitpick/nitpick.ML") ("Tools/Nitpick/nitpick_isar.ML") ("Tools/Nitpick/nitpick_tests.ML") begin typedecl bisim_iterator axiomatization unknown :: 'a and is_unknown :: "'a \<Rightarrow> bool" and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" and bisim_iterator_max :: bisim_iterator and Quot :: "'a \<Rightarrow> 'b" and safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" datatype ('a, 'b) fun_box = FunBox "('a \<Rightarrow> 'b)" datatype ('a, 'b) pair_box = PairBox 'a 'b typedecl unsigned_bit typedecl signed_bit datatype 'a word = Word "('a set)" text {* Alternative definitions. *} lemma Ex1_unfold [nitpick_unfold, no_atp]: "Ex1 P \<equiv> \<exists>x. {x. P x} = {x}" apply (rule eq_reflection) apply (simp add: Ex1_def set_eq_iff) apply (rule iffI) apply (erule exE) apply (erule conjE) apply (rule_tac x = x in exI) apply (rule allI) apply (rename_tac y) apply (erule_tac x = y in allE) by auto lemma rtrancl_unfold [nitpick_unfold, no_atp]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>=" by (simp only: rtrancl_trancl_reflcl) lemma rtranclp_unfold [nitpick_unfold, no_atp]: "rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)" by (rule eq_reflection) (auto dest: rtranclpD) lemma tranclp_unfold [nitpick_unfold, no_atp]: "tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}" by (simp add: trancl_def) definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where "prod A B = {(a, b). a \<in> A \<and> b \<in> B}" definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where "refl' r \<equiv> \<forall>x. (x, x) \<in> r" definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where "wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)" definition card' :: "'a set \<Rightarrow> nat" where "card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0" definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where "setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0" inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where "fold_graph' f z {} z" | "\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)" text {* The following lemmas are not strictly necessary but they help the \textit{special\_level} optimization. *} lemma The_psimp [nitpick_psimp, no_atp]: "P = (op =) x \<Longrightarrow> The P = x" by auto lemma Eps_psimp [nitpick_psimp, no_atp]: "\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x" apply (case_tac "P (Eps P)") apply auto apply (erule contrapos_np) by (rule someI) lemma unit_case_unfold [nitpick_unfold, no_atp]: "unit_case x u \<equiv> x" apply (subgoal_tac "u = ()") apply (simp only: unit.cases) by simp declare unit.cases [nitpick_simp del] lemma nat_case_unfold [nitpick_unfold, no_atp]: "nat_case x f n \<equiv> if n = 0 then x else f (n - 1)" apply (rule eq_reflection) by (case_tac n) auto declare nat.cases [nitpick_simp del] lemma list_size_simp [nitpick_simp, no_atp]: "list_size f xs = (if xs = [] then 0 else Suc (f (hd xs) + list_size f (tl xs)))" "size xs = (if xs = [] then 0 else Suc (size (tl xs)))" by (case_tac xs) auto text {* Auxiliary definitions used to provide an alternative representation for @{text rat} and @{text real}. *} function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where [simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))" by auto termination apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))") apply auto apply (metis mod_less_divisor xt1(9)) by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10)) definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "nat_lcm x y = x * y div (nat_gcd x y)" definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where "int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))" definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where "int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))" definition Frac :: "int \<times> int \<Rightarrow> bool" where "Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1" axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a" and Rep_Frac :: "'a \<Rightarrow> int \<times> int" definition zero_frac :: 'a where "zero_frac \<equiv> Abs_Frac (0, 1)" definition one_frac :: 'a where "one_frac \<equiv> Abs_Frac (1, 1)" definition num :: "'a \<Rightarrow> int" where "num \<equiv> fst o Rep_Frac" definition denom :: "'a \<Rightarrow> int" where "denom \<equiv> snd o Rep_Frac" function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where [simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b) else if a = 0 \<or> b = 0 then (0, 1) else let c = int_gcd a b in (a div c, b div c))" by pat_completeness auto termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where "frac a b \<equiv> Abs_Frac (norm_frac a b)" definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where [nitpick_simp]: "plus_frac q r = (let d = int_lcm (denom q) (denom r) in frac (num q * (d div denom q) + num r * (d div denom r)) d)" definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where [nitpick_simp]: "times_frac q r = frac (num q * num r) (denom q * denom r)" definition uminus_frac :: "'a \<Rightarrow> 'a" where "uminus_frac q \<equiv> Abs_Frac (- num q, denom q)" definition number_of_frac :: "int \<Rightarrow> 'a" where "number_of_frac n \<equiv> Abs_Frac (n, 1)" definition inverse_frac :: "'a \<Rightarrow> 'a" where "inverse_frac q \<equiv> frac (denom q) (num q)" definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where [nitpick_simp]: "less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0" definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where [nitpick_simp]: "less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0" definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where "of_frac q \<equiv> of_int (num q) / of_int (denom q)" use "Tools/Nitpick/kodkod.ML" use "Tools/Nitpick/kodkod_sat.ML" use "Tools/Nitpick/nitpick_util.ML" use "Tools/Nitpick/nitpick_hol.ML" use "Tools/Nitpick/nitpick_mono.ML" use "Tools/Nitpick/nitpick_preproc.ML" use "Tools/Nitpick/nitpick_scope.ML" use "Tools/Nitpick/nitpick_peephole.ML" use "Tools/Nitpick/nitpick_rep.ML" use "Tools/Nitpick/nitpick_nut.ML" use "Tools/Nitpick/nitpick_kodkod.ML" use "Tools/Nitpick/nitpick_model.ML" use "Tools/Nitpick/nitpick.ML" use "Tools/Nitpick/nitpick_isar.ML" use "Tools/Nitpick/nitpick_tests.ML" setup {* Nitpick_Isar.setup #> Nitpick_HOL.register_ersatz_global [(@{const_name card}, @{const_name card'}), (@{const_name setsum}, @{const_name setsum'}), (@{const_name fold_graph}, @{const_name fold_graph'}), (@{const_name wf}, @{const_name wf'})] *} hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The FunBox PairBox Word prod refl' wf' card' setsum' fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac one_frac num denom norm_frac frac plus_frac times_frac uminus_frac number_of_frac inverse_frac less_frac less_eq_frac of_frac hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold prod_def refl'_def wf'_def card'_def setsum'_def fold_graph'_def The_psimp Eps_psimp unit_case_unfold nat_case_unfold list_size_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def zero_frac_def one_frac_def num_def denom_def norm_frac_def frac_def plus_frac_def times_frac_def uminus_frac_def number_of_frac_def inverse_frac_def less_frac_def less_eq_frac_def of_frac_def end