| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46041 | 1e3ff542e83e |
| child 46950 | d0181abdbdac |
| permissions | -rw-r--r-- |
(* Title: HOL/Partial_Function.thy Author: Alexander Krauss, TU Muenchen *) header {* Partial Function Definitions *} theory Partial_Function imports Complete_Partial_Order Option uses "Tools/Function/function_lib.ML" "Tools/Function/partial_function.ML" begin setup Partial_Function.setup subsection {* Axiomatic setup *} text {* This techical locale constains the requirements for function definitions with ccpo fixed points. *} definition "fun_ord ord f g \<longleftrightarrow> (\<forall>x. ord (f x) (g x))" definition "fun_lub L A = (\<lambda>x. L {y. \<exists>f\<in>A. y = f x})" definition "img_ord f ord = (\<lambda>x y. ord (f x) (f y))" definition "img_lub f g Lub = (\<lambda>A. g (Lub (f ` A)))" lemma chain_fun: assumes A: "chain (fun_ord ord) A" shows "chain ord {y. \<exists>f\<in>A. y = f a}" (is "chain ord ?C") proof (rule chainI) fix x y assume "x \<in> ?C" "y \<in> ?C" then obtain f g where fg: "f \<in> A" "g \<in> A" and [simp]: "x = f a" "y = g a" by blast from chainD[OF A fg] show "ord x y \<or> ord y x" unfolding fun_ord_def by auto qed lemma call_mono[partial_function_mono]: "monotone (fun_ord ord) ord (\<lambda>f. f t)" by (rule monotoneI) (auto simp: fun_ord_def) lemma let_mono[partial_function_mono]: "(\<And>x. monotone orda ordb (\<lambda>f. b f x)) \<Longrightarrow> monotone orda ordb (\<lambda>f. Let t (b f))" by (simp add: Let_def) lemma if_mono[partial_function_mono]: "monotone orda ordb F \<Longrightarrow> monotone orda ordb G \<Longrightarrow> monotone orda ordb (\<lambda>f. if c then F f else G f)" unfolding monotone_def by simp definition "mk_less R = (\<lambda>x y. R x y \<and> \<not> R y x)" locale partial_function_definitions = fixes leq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" fixes lub :: "'a set \<Rightarrow> 'a" assumes leq_refl: "leq x x" assumes leq_trans: "leq x y \<Longrightarrow> leq y z \<Longrightarrow> leq x z" assumes leq_antisym: "leq x y \<Longrightarrow> leq y x \<Longrightarrow> x = y" assumes lub_upper: "chain leq A \<Longrightarrow> x \<in> A \<Longrightarrow> leq x (lub A)" assumes lub_least: "chain leq A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> leq x z) \<Longrightarrow> leq (lub A) z" lemma partial_function_lift: assumes "partial_function_definitions ord lb" shows "partial_function_definitions (fun_ord ord) (fun_lub lb)" (is "partial_function_definitions ?ordf ?lubf") proof - interpret partial_function_definitions ord lb by fact show ?thesis proof fix x show "?ordf x x" unfolding fun_ord_def by (auto simp: leq_refl) next fix x y z assume "?ordf x y" "?ordf y z" thus "?ordf x z" unfolding fun_ord_def by (force dest: leq_trans) next fix x y assume "?ordf x y" "?ordf y x" thus "x = y" unfolding fun_ord_def by (force intro!: dest: leq_antisym) next fix A f assume f: "f \<in> A" and A: "chain ?ordf A" thus "?ordf f (?lubf A)" unfolding fun_lub_def fun_ord_def by (blast intro: lub_upper chain_fun[OF A] f) next fix A :: "('b \<Rightarrow> 'a) set" and g :: "'b \<Rightarrow> 'a" assume A: "chain ?ordf A" and g: "\<And>f. f \<in> A \<Longrightarrow> ?ordf f g" show "?ordf (?lubf A) g" unfolding fun_lub_def fun_ord_def by (blast intro: lub_least chain_fun[OF A] dest: g[unfolded fun_ord_def]) qed qed lemma ccpo: assumes "partial_function_definitions ord lb" shows "class.ccpo lb ord (mk_less ord)" using assms unfolding partial_function_definitions_def mk_less_def by unfold_locales blast+ lemma partial_function_image: assumes "partial_function_definitions ord Lub" assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y" assumes inv: "\<And>x. f (g x) = x" shows "partial_function_definitions (img_ord f ord) (img_lub f g Lub)" proof - let ?iord = "img_ord f ord" let ?ilub = "img_lub f g Lub" interpret partial_function_definitions ord Lub by fact show ?thesis proof fix A x assume "chain ?iord A" "x \<in> A" then have "chain ord (f ` A)" "f x \<in> f ` A" by (auto simp: img_ord_def intro: chainI dest: chainD) thus "?iord x (?ilub A)" unfolding inv img_lub_def img_ord_def by (rule lub_upper) next fix A x assume "chain ?iord A" and 1: "\<And>z. z \<in> A \<Longrightarrow> ?iord z x" then have "chain ord (f ` A)" by (auto simp: img_ord_def intro: chainI dest: chainD) thus "?iord (?ilub A) x" unfolding inv img_lub_def img_ord_def by (rule lub_least) (auto dest: 1[unfolded img_ord_def]) qed (auto simp: img_ord_def intro: leq_refl dest: leq_trans leq_antisym inj) qed context partial_function_definitions begin abbreviation "le_fun \<equiv> fun_ord leq" abbreviation "lub_fun \<equiv> fun_lub lub" abbreviation "fixp_fun \<equiv> ccpo.fixp lub_fun le_fun" abbreviation "mono_body \<equiv> monotone le_fun leq" abbreviation "admissible \<equiv> ccpo.admissible lub_fun le_fun" text {* Interpret manually, to avoid flooding everything with facts about orders *} lemma ccpo: "class.ccpo lub_fun le_fun (mk_less le_fun)" apply (rule ccpo) apply (rule partial_function_lift) apply (rule partial_function_definitions_axioms) done text {* The crucial fixed-point theorem *} lemma mono_body_fixp: "(\<And>x. mono_body (\<lambda>f. F f x)) \<Longrightarrow> fixp_fun F = F (fixp_fun F)" by (rule ccpo.fixp_unfold[OF ccpo]) (auto simp: monotone_def fun_ord_def) text {* Version with curry/uncurry combinators, to be used by package *} lemma fixp_rule_uc: fixes F :: "'c \<Rightarrow> 'c" and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c" assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)" assumes eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))" assumes inverse: "\<And>f. C (U f) = f" shows "f = F f" proof - have "f = C (fixp_fun (\<lambda>f. U (F (C f))))" by (simp add: eq) also have "... = C (U (F (C (fixp_fun (\<lambda>f. U (F (C f)))))))" by (subst mono_body_fixp[of "%f. U (F (C f))", OF mono]) (rule refl) also have "... = F (C (fixp_fun (\<lambda>f. U (F (C f)))))" by (rule inverse) also have "... = F f" by (simp add: eq) finally show "f = F f" . qed text {* Fixpoint induction rule *} lemma fixp_induct_uc: fixes F :: "'c \<Rightarrow> 'c" and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c" and P :: "('b \<Rightarrow> 'a) \<Rightarrow> bool" assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)" assumes eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))" assumes inverse: "\<And>f. U (C f) = f" assumes adm: "ccpo.admissible lub_fun le_fun P" assumes step: "\<And>f. P (U f) \<Longrightarrow> P (U (F f))" shows "P (U f)" unfolding eq inverse apply (rule ccpo.fixp_induct[OF ccpo adm]) apply (insert mono, auto simp: monotone_def fun_ord_def)[1] by (rule_tac f="C x" in step, simp add: inverse) text {* Rules for @{term mono_body}: *} lemma const_mono[partial_function_mono]: "monotone ord leq (\<lambda>f. c)" by (rule monotoneI) (rule leq_refl) end subsection {* Flat interpretation: tailrec and option *} definition "flat_ord b x y \<longleftrightarrow> x = b \<or> x = y" definition "flat_lub b A = (if A \<subseteq> {b} then b else (THE x. x \<in> A - {b}))" lemma flat_interpretation: "partial_function_definitions (flat_ord b) (flat_lub b)" proof fix A x assume 1: "chain (flat_ord b) A" "x \<in> A" show "flat_ord b x (flat_lub b A)" proof cases assume "x = b" thus ?thesis by (simp add: flat_ord_def) next assume "x \<noteq> b" with 1 have "A - {b} = {x}" by (auto elim: chainE simp: flat_ord_def) then have "flat_lub b A = x" by (auto simp: flat_lub_def) thus ?thesis by (auto simp: flat_ord_def) qed next fix A z assume A: "chain (flat_ord b) A" and z: "\<And>x. x \<in> A \<Longrightarrow> flat_ord b x z" show "flat_ord b (flat_lub b A) z" proof cases assume "A \<subseteq> {b}" thus ?thesis by (auto simp: flat_lub_def flat_ord_def) next assume nb: "\<not> A \<subseteq> {b}" then obtain y where y: "y \<in> A" "y \<noteq> b" by auto with A have "A - {b} = {y}" by (auto elim: chainE simp: flat_ord_def) with nb have "flat_lub b A = y" by (auto simp: flat_lub_def) with z y show ?thesis by auto qed qed (auto simp: flat_ord_def) interpretation tailrec!: partial_function_definitions "flat_ord undefined" "flat_lub undefined" by (rule flat_interpretation) interpretation option!: partial_function_definitions "flat_ord None" "flat_lub None" by (rule flat_interpretation) abbreviation "option_ord \<equiv> flat_ord None" abbreviation "mono_option \<equiv> monotone (fun_ord option_ord) option_ord" lemma bind_mono[partial_function_mono]: assumes mf: "mono_option B" and mg: "\<And>y. mono_option (\<lambda>f. C y f)" shows "mono_option (\<lambda>f. Option.bind (B f) (\<lambda>y. C y f))" proof (rule monotoneI) fix f g :: "'a \<Rightarrow> 'b option" assume fg: "fun_ord option_ord f g" with mf have "option_ord (B f) (B g)" by (rule monotoneD[of _ _ _ f g]) then have "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y. C y f))" unfolding flat_ord_def by auto also from mg have "\<And>y'. option_ord (C y' f) (C y' g)" by (rule monotoneD) (rule fg) then have "option_ord (Option.bind (B g) (\<lambda>y'. C y' f)) (Option.bind (B g) (\<lambda>y'. C y' g))" unfolding flat_ord_def by (cases "B g") auto finally (option.leq_trans) show "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y'. C y' g))" . qed lemma flat_lub_in_chain: assumes ch: "chain (flat_ord b) A " assumes lub: "flat_lub b A = a" shows "a = b \<or> a \<in> A" proof (cases "A \<subseteq> {b}") case True then have "flat_lub b A = b" unfolding flat_lub_def by simp with lub show ?thesis by simp next case False then obtain c where "c \<in> A" and "c \<noteq> b" by auto { fix z assume "z \<in> A" from chainD[OF ch `c \<in> A` this] have "z = c \<or> z = b" unfolding flat_ord_def using `c \<noteq> b` by auto } with False have "A - {b} = {c}" by auto with False have "flat_lub b A = c" by (auto simp: flat_lub_def) with `c \<in> A` lub show ?thesis by simp qed lemma option_admissible: "option.admissible (%(f::'a \<Rightarrow> 'b option). (\<forall>x y. f x = Some y \<longrightarrow> P x y))" proof (rule ccpo.admissibleI[OF option.ccpo]) fix A :: "('a \<Rightarrow> 'b option) set" assume ch: "chain option.le_fun A" and IH: "\<forall>f\<in>A. \<forall>x y. f x = Some y \<longrightarrow> P x y" from ch have ch': "\<And>x. chain option_ord {y. \<exists>f\<in>A. y = f x}" by (rule chain_fun) show "\<forall>x y. option.lub_fun A x = Some y \<longrightarrow> P x y" proof (intro allI impI) fix x y assume "option.lub_fun A x = Some y" from flat_lub_in_chain[OF ch' this[unfolded fun_lub_def]] have "Some y \<in> {y. \<exists>f\<in>A. y = f x}" by simp then have "\<exists>f\<in>A. f x = Some y" by auto with IH show "P x y" by auto qed qed lemma fixp_induct_option: fixes F :: "'c \<Rightarrow> 'c" and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a option" and C :: "('b \<Rightarrow> 'a option) \<Rightarrow> 'c" and P :: "'b \<Rightarrow> 'a \<Rightarrow> bool" assumes mono: "\<And>x. mono_option (\<lambda>f. U (F (C f)) x)" assumes eq: "f \<equiv> C (ccpo.fixp (fun_lub (flat_lub None)) (fun_ord option_ord) (\<lambda>f. U (F (C f))))" assumes inverse2: "\<And>f. U (C f) = f" assumes step: "\<And>f x y. (\<And>x y. U f x = Some y \<Longrightarrow> P x y) \<Longrightarrow> U (F f) x = Some y \<Longrightarrow> P x y" assumes defined: "U f x = Some y" shows "P x y" using step defined option.fixp_induct_uc[of U F C, OF mono eq inverse2 option_admissible] by blast declaration {* Partial_Function.init "tailrec" @{term tailrec.fixp_fun} @{term tailrec.mono_body} @{thm tailrec.fixp_rule_uc} NONE *} declaration {* Partial_Function.init "option" @{term option.fixp_fun} @{term option.mono_body} @{thm option.fixp_rule_uc} (SOME @{thm fixp_induct_option}) *} hide_const (open) chain end