| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45288 | fc3c7db5bb2f |
| child 46731 | 5302e932d1e5 |
| permissions | -rw-r--r-- |
(* Title: HOL/Probability/Borel_Space.thy Author: Johannes Hölzl, TU München Author: Armin Heller, TU München *) header {*Borel spaces*} theory Borel_Space imports Sigma_Algebra "~~/src/HOL/Multivariate_Analysis/Multivariate_Analysis" begin section "Generic Borel spaces" definition "borel = sigma \<lparr> space = UNIV::'a::topological_space set, sets = {S. open S}\<rparr>" abbreviation "borel_measurable M \<equiv> measurable M borel" interpretation borel: sigma_algebra borel by (auto simp: borel_def intro!: sigma_algebra_sigma) lemma in_borel_measurable: "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>S \<in> sets (sigma \<lparr> space = UNIV, sets = {S. open S}\<rparr>). f -` S \<inter> space M \<in> sets M)" by (auto simp add: measurable_def borel_def) lemma in_borel_measurable_borel: "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>S \<in> sets borel. f -` S \<inter> space M \<in> sets M)" by (auto simp add: measurable_def borel_def) lemma space_borel[simp]: "space borel = UNIV" unfolding borel_def by auto lemma borel_open[simp]: assumes "open A" shows "A \<in> sets borel" proof - have "A \<in> {S. open S}" unfolding mem_Collect_eq using assms . thus ?thesis unfolding borel_def sigma_def by (auto intro!: sigma_sets.Basic) qed lemma borel_closed[simp]: assumes "closed A" shows "A \<in> sets borel" proof - have "space borel - (- A) \<in> sets borel" using assms unfolding closed_def by (blast intro: borel_open) thus ?thesis by simp qed lemma borel_comp[intro,simp]: "A \<in> sets borel \<Longrightarrow> - A \<in> sets borel" unfolding Compl_eq_Diff_UNIV by (intro borel.Diff) auto lemma (in sigma_algebra) borel_measurable_vimage: fixes f :: "'a \<Rightarrow> 'x::t2_space" assumes borel: "f \<in> borel_measurable M" shows "f -` {x} \<inter> space M \<in> sets M" proof (cases "x \<in> f ` space M") case True then obtain y where "x = f y" by auto from closed_singleton[of "f y"] have "{f y} \<in> sets borel" by (rule borel_closed) with assms show ?thesis unfolding in_borel_measurable_borel `x = f y` by auto next case False hence "f -` {x} \<inter> space M = {}" by auto thus ?thesis by auto qed lemma (in sigma_algebra) borel_measurableI: fixes f :: "'a \<Rightarrow> 'x\<Colon>topological_space" assumes "\<And>S. open S \<Longrightarrow> f -` S \<inter> space M \<in> sets M" shows "f \<in> borel_measurable M" unfolding borel_def proof (rule measurable_sigma, simp_all) fix S :: "'x set" assume "open S" thus "f -` S \<inter> space M \<in> sets M" using assms[of S] by simp qed lemma borel_singleton[simp, intro]: fixes x :: "'a::t1_space" shows "A \<in> sets borel \<Longrightarrow> insert x A \<in> sets borel" proof (rule borel.insert_in_sets) show "{x} \<in> sets borel" using closed_singleton[of x] by (rule borel_closed) qed simp lemma (in sigma_algebra) borel_measurable_const[simp, intro]: "(\<lambda>x. c) \<in> borel_measurable M" by (auto intro!: measurable_const) lemma (in sigma_algebra) borel_measurable_indicator[simp, intro!]: assumes A: "A \<in> sets M" shows "indicator A \<in> borel_measurable M" unfolding indicator_def_raw using A by (auto intro!: measurable_If_set borel_measurable_const) lemma (in sigma_algebra) borel_measurable_indicator_iff: "(indicator A :: 'a \<Rightarrow> 'x::{t1_space, zero_neq_one}) \<in> borel_measurable M \<longleftrightarrow> A \<inter> space M \<in> sets M" (is "?I \<in> borel_measurable M \<longleftrightarrow> _") proof assume "?I \<in> borel_measurable M" then have "?I -` {1} \<inter> space M \<in> sets M" unfolding measurable_def by auto also have "?I -` {1} \<inter> space M = A \<inter> space M" unfolding indicator_def_raw by auto finally show "A \<inter> space M \<in> sets M" . next assume "A \<inter> space M \<in> sets M" moreover have "?I \<in> borel_measurable M \<longleftrightarrow> (indicator (A \<inter> space M) :: 'a \<Rightarrow> 'x) \<in> borel_measurable M" by (intro measurable_cong) (auto simp: indicator_def) ultimately show "?I \<in> borel_measurable M" by auto qed lemma (in sigma_algebra) borel_measurable_restricted: fixes f :: "'a \<Rightarrow> ereal" assumes "A \<in> sets M" shows "f \<in> borel_measurable (restricted_space A) \<longleftrightarrow> (\<lambda>x. f x * indicator A x) \<in> borel_measurable M" (is "f \<in> borel_measurable ?R \<longleftrightarrow> ?f \<in> borel_measurable M") proof - interpret R: sigma_algebra ?R by (rule restricted_sigma_algebra[OF `A \<in> sets M`]) have *: "f \<in> borel_measurable ?R \<longleftrightarrow> ?f \<in> borel_measurable ?R" by (auto intro!: measurable_cong) show ?thesis unfolding * unfolding in_borel_measurable_borel proof (simp, safe) fix S :: "ereal set" assume "S \<in> sets borel" "\<forall>S\<in>sets borel. ?f -` S \<inter> A \<in> op \<inter> A ` sets M" then have "?f -` S \<inter> A \<in> op \<inter> A ` sets M" by auto then have f: "?f -` S \<inter> A \<in> sets M" using `A \<in> sets M` sets_into_space by fastforce show "?f -` S \<inter> space M \<in> sets M" proof cases assume "0 \<in> S" then have "?f -` S \<inter> space M = ?f -` S \<inter> A \<union> (space M - A)" using `A \<in> sets M` sets_into_space by auto then show ?thesis using f `A \<in> sets M` by (auto intro!: Un Diff) next assume "0 \<notin> S" then have "?f -` S \<inter> space M = ?f -` S \<inter> A" using `A \<in> sets M` sets_into_space by (auto simp: indicator_def split: split_if_asm) then show ?thesis using f by auto qed next fix S :: "ereal set" assume "S \<in> sets borel" "\<forall>S\<in>sets borel. ?f -` S \<inter> space M \<in> sets M" then have f: "?f -` S \<inter> space M \<in> sets M" by auto then show "?f -` S \<inter> A \<in> op \<inter> A ` sets M" using `A \<in> sets M` sets_into_space apply (simp add: image_iff) apply (rule bexI[OF _ f]) by auto qed qed lemma (in sigma_algebra) borel_measurable_subalgebra: assumes "sets N \<subseteq> sets M" "space N = space M" "f \<in> borel_measurable N" shows "f \<in> borel_measurable M" using assms unfolding measurable_def by auto section "Borel spaces on euclidean spaces" lemma lessThan_borel[simp, intro]: fixes a :: "'a\<Colon>ordered_euclidean_space" shows "{..< a} \<in> sets borel" by (blast intro: borel_open) lemma greaterThan_borel[simp, intro]: fixes a :: "'a\<Colon>ordered_euclidean_space" shows "{a <..} \<in> sets borel" by (blast intro: borel_open) lemma greaterThanLessThan_borel[simp, intro]: fixes a b :: "'a\<Colon>ordered_euclidean_space" shows "{a<..<b} \<in> sets borel" by (blast intro: borel_open) lemma atMost_borel[simp, intro]: fixes a :: "'a\<Colon>ordered_euclidean_space" shows "{..a} \<in> sets borel" by (blast intro: borel_closed) lemma atLeast_borel[simp, intro]: fixes a :: "'a\<Colon>ordered_euclidean_space" shows "{a..} \<in> sets borel" by (blast intro: borel_closed) lemma atLeastAtMost_borel[simp, intro]: fixes a b :: "'a\<Colon>ordered_euclidean_space" shows "{a..b} \<in> sets borel" by (blast intro: borel_closed) lemma greaterThanAtMost_borel[simp, intro]: fixes a b :: "'a\<Colon>ordered_euclidean_space" shows "{a<..b} \<in> sets borel" unfolding greaterThanAtMost_def by blast lemma atLeastLessThan_borel[simp, intro]: fixes a b :: "'a\<Colon>ordered_euclidean_space" shows "{a..<b} \<in> sets borel" unfolding atLeastLessThan_def by blast lemma hafspace_less_borel[simp, intro]: fixes a :: real shows "{x::'a::euclidean_space. a < x $$ i} \<in> sets borel" by (auto intro!: borel_open open_halfspace_component_gt) lemma hafspace_greater_borel[simp, intro]: fixes a :: real shows "{x::'a::euclidean_space. x $$ i < a} \<in> sets borel" by (auto intro!: borel_open open_halfspace_component_lt) lemma hafspace_less_eq_borel[simp, intro]: fixes a :: real shows "{x::'a::euclidean_space. a \<le> x $$ i} \<in> sets borel" by (auto intro!: borel_closed closed_halfspace_component_ge) lemma hafspace_greater_eq_borel[simp, intro]: fixes a :: real shows "{x::'a::euclidean_space. x $$ i \<le> a} \<in> sets borel" by (auto intro!: borel_closed closed_halfspace_component_le) lemma (in sigma_algebra) borel_measurable_less[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{w \<in> space M. f w < g w} \<in> sets M" proof - have "{w \<in> space M. f w < g w} = (\<Union>r. (f -` {..< of_rat r} \<inter> space M) \<inter> (g -` {of_rat r <..} \<inter> space M))" using Rats_dense_in_real by (auto simp add: Rats_def) then show ?thesis using f g by simp (blast intro: measurable_sets) qed lemma (in sigma_algebra) borel_measurable_le[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{w \<in> space M. f w \<le> g w} \<in> sets M" proof - have "{w \<in> space M. f w \<le> g w} = space M - {w \<in> space M. g w < f w}" by auto thus ?thesis using f g by simp blast qed lemma (in sigma_algebra) borel_measurable_eq[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{w \<in> space M. f w = g w} \<in> sets M" proof - have "{w \<in> space M. f w = g w} = {w \<in> space M. f w \<le> g w} \<inter> {w \<in> space M. g w \<le> f w}" by auto thus ?thesis using f g by auto qed lemma (in sigma_algebra) borel_measurable_neq[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{w \<in> space M. f w \<noteq> g w} \<in> sets M" proof - have "{w \<in> space M. f w \<noteq> g w} = space M - {w \<in> space M. f w = g w}" by auto thus ?thesis using f g by auto qed subsection "Borel space equals sigma algebras over intervals" lemma rational_boxes: fixes x :: "'a\<Colon>ordered_euclidean_space" assumes "0 < e" shows "\<exists>a b. (\<forall>i. a $$ i \<in> \<rat>) \<and> (\<forall>i. b $$ i \<in> \<rat>) \<and> x \<in> {a <..< b} \<and> {a <..< b} \<subseteq> ball x e" proof - def e' \<equiv> "e / (2 * sqrt (real (DIM ('a))))" then have e: "0 < e'" using assms by (auto intro!: divide_pos_pos) have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> y < x $$ i \<and> x $$ i - y < e'" (is "\<forall>i. ?th i") proof fix i from Rats_dense_in_real[of "x $$ i - e'" "x $$ i"] e show "?th i" by auto qed from choice[OF this] guess a .. note a = this have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> x $$ i < y \<and> y - x $$ i < e'" (is "\<forall>i. ?th i") proof fix i from Rats_dense_in_real[of "x $$ i" "x $$ i + e'"] e show "?th i" by auto qed from choice[OF this] guess b .. note b = this { fix y :: 'a assume *: "Chi a < y" "y < Chi b" have "dist x y = sqrt (\<Sum>i<DIM('a). (dist (x $$ i) (y $$ i))\<twosuperior>)" unfolding setL2_def[symmetric] by (rule euclidean_dist_l2) also have "\<dots> < sqrt (\<Sum>i<DIM('a). e^2 / real (DIM('a)))" proof (rule real_sqrt_less_mono, rule setsum_strict_mono) fix i assume i: "i \<in> {..<DIM('a)}" have "a i < y$$i \<and> y$$i < b i" using * i eucl_less[where 'a='a] by auto moreover have "a i < x$$i" "x$$i - a i < e'" using a by auto moreover have "x$$i < b i" "b i - x$$i < e'" using b by auto ultimately have "\<bar>x$$i - y$$i\<bar> < 2 * e'" by auto then have "dist (x $$ i) (y $$ i) < e/sqrt (real (DIM('a)))" unfolding e'_def by (auto simp: dist_real_def) then have "(dist (x $$ i) (y $$ i))\<twosuperior> < (e/sqrt (real (DIM('a))))\<twosuperior>" by (rule power_strict_mono) auto then show "(dist (x $$ i) (y $$ i))\<twosuperior> < e\<twosuperior> / real DIM('a)" by (simp add: power_divide) qed auto also have "\<dots> = e" using `0 < e` by (simp add: real_eq_of_nat DIM_positive) finally have "dist x y < e" . } with a b show ?thesis apply (rule_tac exI[of _ "Chi a"]) apply (rule_tac exI[of _ "Chi b"]) using eucl_less[where 'a='a] by auto qed lemma ex_rat_list: fixes x :: "'a\<Colon>ordered_euclidean_space" assumes "\<And> i. x $$ i \<in> \<rat>" shows "\<exists> r. length r = DIM('a) \<and> (\<forall> i < DIM('a). of_rat (r ! i) = x $$ i)" proof - have "\<forall>i. \<exists>r. x $$ i = of_rat r" using assms unfolding Rats_def by blast from choice[OF this] guess r .. then show ?thesis by (auto intro!: exI[of _ "map r [0 ..< DIM('a)]"]) qed lemma open_UNION: fixes M :: "'a\<Colon>ordered_euclidean_space set" assumes "open M" shows "M = UNION {(a, b) | a b. {Chi (of_rat \<circ> op ! a) <..< Chi (of_rat \<circ> op ! b)} \<subseteq> M} (\<lambda> (a, b). {Chi (of_rat \<circ> op ! a) <..< Chi (of_rat \<circ> op ! b)})" (is "M = UNION ?idx ?box") proof safe fix x assume "x \<in> M" obtain e where e: "e > 0" "ball x e \<subseteq> M" using openE[OF assms `x \<in> M`] by auto then obtain a b where ab: "x \<in> {a <..< b}" "\<And>i. a $$ i \<in> \<rat>" "\<And>i. b $$ i \<in> \<rat>" "{a <..< b} \<subseteq> ball x e" using rational_boxes[OF e(1)] by blast then obtain p q where pq: "length p = DIM ('a)" "length q = DIM ('a)" "\<forall> i < DIM ('a). of_rat (p ! i) = a $$ i \<and> of_rat (q ! i) = b $$ i" using ex_rat_list[OF ab(2)] ex_rat_list[OF ab(3)] by blast hence p: "Chi (of_rat \<circ> op ! p) = a" using euclidean_eq[of "Chi (of_rat \<circ> op ! p)" a] unfolding o_def by auto from pq have q: "Chi (of_rat \<circ> op ! q) = b" using euclidean_eq[of "Chi (of_rat \<circ> op ! q)" b] unfolding o_def by auto have "x \<in> ?box (p, q)" using p q ab by auto thus "x \<in> UNION ?idx ?box" using ab e p q exI[of _ p] exI[of _ q] by auto qed auto lemma halfspace_span_open: "sigma_sets UNIV (range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i < a})) \<subseteq> sets borel" by (auto intro!: borel.sigma_sets_subset[simplified] borel_open open_halfspace_component_lt) lemma halfspace_lt_in_halfspace: "{x\<Colon>'a. x $$ i < a} \<in> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i < a})\<rparr>)" by (auto intro!: sigma_sets.Basic simp: sets_sigma) lemma halfspace_gt_in_halfspace: "{x\<Colon>'a. a < x $$ i} \<in> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i < a})\<rparr>)" (is "?set \<in> sets ?SIGMA") proof - interpret sigma_algebra "?SIGMA" by (intro sigma_algebra_sigma_sets) (simp_all add: sets_sigma) have *: "?set = (\<Union>n. space ?SIGMA - {x\<Colon>'a. x $$ i < a + 1 / real (Suc n)})" proof (safe, simp_all add: not_less) fix x assume "a < x $$ i" with reals_Archimedean[of "x $$ i - a"] obtain n where "a + 1 / real (Suc n) < x $$ i" by (auto simp: inverse_eq_divide field_simps) then show "\<exists>n. a + 1 / real (Suc n) \<le> x $$ i" by (blast intro: less_imp_le) next fix x n have "a < a + 1 / real (Suc n)" by auto also assume "\<dots> \<le> x" finally show "a < x" . qed show "?set \<in> sets ?SIGMA" unfolding * by (safe intro!: countable_UN Diff halfspace_lt_in_halfspace) qed lemma open_span_halfspace: "sets borel \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. x $$ i < a})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) simp then interpret sigma_algebra ?SIGMA . { fix S :: "'a set" assume "S \<in> {S. open S}" then have "open S" unfolding mem_Collect_eq . from open_UNION[OF this] obtain I where *: "S = (\<Union>(a, b)\<in>I. (\<Inter> i<DIM('a). {x. (Chi (real_of_rat \<circ> op ! a)::'a) $$ i < x $$ i}) \<inter> (\<Inter> i<DIM('a). {x. x $$ i < (Chi (real_of_rat \<circ> op ! b)::'a) $$ i}))" unfolding greaterThanLessThan_def unfolding eucl_greaterThan_eq_halfspaces[where 'a='a] unfolding eucl_lessThan_eq_halfspaces[where 'a='a] by blast have "S \<in> sets ?SIGMA" unfolding * by (auto intro!: countable_UN Int countable_INT halfspace_lt_in_halfspace halfspace_gt_in_halfspace) } then show ?thesis unfolding borel_def by (intro sets_sigma_subset) auto qed lemma halfspace_span_halfspace_le: "sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i < a})\<rparr>) \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x. x $$ i \<le> a})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . { fix a i have *: "{x::'a. x$$i < a} = (\<Union>n. {x. x$$i \<le> a - 1/real (Suc n)})" proof (safe, simp_all) fix x::'a assume *: "x$$i < a" with reals_Archimedean[of "a - x$$i"] obtain n where "x $$ i < a - 1 / (real (Suc n))" by (auto simp: field_simps inverse_eq_divide) then show "\<exists>n. x $$ i \<le> a - 1 / (real (Suc n))" by (blast intro: less_imp_le) next fix x::'a and n assume "x$$i \<le> a - 1 / real (Suc n)" also have "\<dots> < a" by auto finally show "x$$i < a" . qed have "{x. x$$i < a} \<in> sets ?SIGMA" unfolding * by (safe intro!: countable_UN) (auto simp: sets_sigma intro!: sigma_sets.Basic) } then show ?thesis by (intro sets_sigma_subset) auto qed lemma halfspace_span_halfspace_ge: "sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i < a})\<rparr>) \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x. a \<le> x $$ i})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . { fix a i have *: "{x::'a. x$$i < a} = space ?SIGMA - {x::'a. a \<le> x$$i}" by auto have "{x. x$$i < a} \<in> sets ?SIGMA" unfolding * by (safe intro!: Diff) (auto simp: sets_sigma intro!: sigma_sets.Basic) } then show ?thesis by (intro sets_sigma_subset) auto qed lemma halfspace_le_span_halfspace_gt: "sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i \<le> a})\<rparr>) \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x. a < x $$ i})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . { fix a i have *: "{x::'a. x$$i \<le> a} = space ?SIGMA - {x::'a. a < x$$i}" by auto have "{x. x$$i \<le> a} \<in> sets ?SIGMA" unfolding * by (safe intro!: Diff) (auto simp: sets_sigma intro!: sigma_sets.Basic) } then show ?thesis by (intro sets_sigma_subset) auto qed lemma halfspace_le_span_atMost: "sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i \<le> a})\<rparr>) \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda>a. {..a\<Colon>'a\<Colon>ordered_euclidean_space})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . have "\<And>a i. {x. x$$i \<le> a} \<in> sets ?SIGMA" proof cases fix a i assume "i < DIM('a)" then have *: "{x::'a. x$$i \<le> a} = (\<Union>k::nat. {.. (\<chi>\<chi> n. if n = i then a else real k)})" proof (safe, simp_all add: eucl_le[where 'a='a] split: split_if_asm) fix x from real_arch_simple[of "Max ((\<lambda>i. x$$i)`{..<DIM('a)})"] guess k::nat .. then have "\<And>i. i < DIM('a) \<Longrightarrow> x$$i \<le> real k" by (subst (asm) Max_le_iff) auto then show "\<exists>k::nat. \<forall>ia. ia \<noteq> i \<longrightarrow> ia < DIM('a) \<longrightarrow> x $$ ia \<le> real k" by (auto intro!: exI[of _ k]) qed show "{x. x$$i \<le> a} \<in> sets ?SIGMA" unfolding * by (safe intro!: countable_UN) (auto simp: sets_sigma intro!: sigma_sets.Basic) next fix a i assume "\<not> i < DIM('a)" then show "{x. x$$i \<le> a} \<in> sets ?SIGMA" using top by auto qed then show ?thesis by (intro sets_sigma_subset) auto qed lemma halfspace_le_span_greaterThan: "sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. x $$ i \<le> a})\<rparr>) \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda>a. {a<..})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . have "\<And>a i. {x. x$$i \<le> a} \<in> sets ?SIGMA" proof cases fix a i assume "i < DIM('a)" have "{x::'a. x$$i \<le> a} = space ?SIGMA - {x::'a. a < x$$i}" by auto also have *: "{x::'a. a < x$$i} = (\<Union>k::nat. {(\<chi>\<chi> n. if n = i then a else -real k) <..})" using `i <DIM('a)` proof (safe, simp_all add: eucl_less[where 'a='a] split: split_if_asm) fix x from reals_Archimedean2[of "Max ((\<lambda>i. -x$$i)`{..<DIM('a)})"] guess k::nat .. note k = this { fix i assume "i < DIM('a)" then have "-x$$i < real k" using k by (subst (asm) Max_less_iff) auto then have "- real k < x$$i" by simp } then show "\<exists>k::nat. \<forall>ia. ia \<noteq> i \<longrightarrow> ia < DIM('a) \<longrightarrow> -real k < x $$ ia" by (auto intro!: exI[of _ k]) qed finally show "{x. x$$i \<le> a} \<in> sets ?SIGMA" apply (simp only:) apply (safe intro!: countable_UN Diff) by (auto simp: sets_sigma intro!: sigma_sets.Basic) next fix a i assume "\<not> i < DIM('a)" then show "{x. x$$i \<le> a} \<in> sets ?SIGMA" using top by auto qed then show ?thesis by (intro sets_sigma_subset) auto qed lemma halfspace_le_span_lessThan: "sets (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x\<Colon>'a\<Colon>ordered_euclidean_space. a \<le> x $$ i})\<rparr>) \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda>a. {..<a})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . have "\<And>a i. {x. a \<le> x$$i} \<in> sets ?SIGMA" proof cases fix a i assume "i < DIM('a)" have "{x::'a. a \<le> x$$i} = space ?SIGMA - {x::'a. x$$i < a}" by auto also have *: "{x::'a. x$$i < a} = (\<Union>k::nat. {..< (\<chi>\<chi> n. if n = i then a else real k)})" using `i <DIM('a)` proof (safe, simp_all add: eucl_less[where 'a='a] split: split_if_asm) fix x from reals_Archimedean2[of "Max ((\<lambda>i. x$$i)`{..<DIM('a)})"] guess k::nat .. note k = this { fix i assume "i < DIM('a)" then have "x$$i < real k" using k by (subst (asm) Max_less_iff) auto then have "x$$i < real k" by simp } then show "\<exists>k::nat. \<forall>ia. ia \<noteq> i \<longrightarrow> ia < DIM('a) \<longrightarrow> x $$ ia < real k" by (auto intro!: exI[of _ k]) qed finally show "{x. a \<le> x$$i} \<in> sets ?SIGMA" apply (simp only:) apply (safe intro!: countable_UN Diff) by (auto simp: sets_sigma intro!: sigma_sets.Basic) next fix a i assume "\<not> i < DIM('a)" then show "{x. a \<le> x$$i} \<in> sets ?SIGMA" using top by auto qed then show ?thesis by (intro sets_sigma_subset) auto qed lemma atMost_span_atLeastAtMost: "sets (sigma \<lparr>space=UNIV, sets=range (\<lambda>a. {..a\<Colon>'a\<Colon>ordered_euclidean_space})\<rparr>) \<subseteq> sets (sigma \<lparr>space=UNIV, sets=range (\<lambda>(a,b). {a..b})\<rparr>)" (is "_ \<subseteq> sets ?SIGMA") proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . { fix a::'a have *: "{..a} = (\<Union>n::nat. {- real n *\<^sub>R One .. a})" proof (safe, simp_all add: eucl_le[where 'a='a]) fix x from real_arch_simple[of "Max ((\<lambda>i. - x$$i)`{..<DIM('a)})"] guess k::nat .. note k = this { fix i assume "i < DIM('a)" with k have "- x$$i \<le> real k" by (subst (asm) Max_le_iff) (auto simp: field_simps) then have "- real k \<le> x$$i" by simp } then show "\<exists>n::nat. \<forall>i<DIM('a). - real n \<le> x $$ i" by (auto intro!: exI[of _ k]) qed have "{..a} \<in> sets ?SIGMA" unfolding * by (safe intro!: countable_UN) (auto simp: sets_sigma intro!: sigma_sets.Basic) } then show ?thesis by (intro sets_sigma_subset) auto qed lemma borel_eq_atMost: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> a. {.. a::'a\<Colon>ordered_euclidean_space})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using halfspace_le_span_atMost halfspace_span_halfspace_le open_span_halfspace by auto show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma borel_eq_atLeastAtMost: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a :: 'a\<Colon>ordered_euclidean_space, b). {a .. b})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using atMost_span_atLeastAtMost halfspace_le_span_atMost halfspace_span_halfspace_le open_span_halfspace by auto show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma borel_eq_greaterThan: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a :: 'a\<Colon>ordered_euclidean_space). {a <..})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using halfspace_le_span_greaterThan halfspace_span_halfspace_le open_span_halfspace by auto show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma borel_eq_lessThan: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a :: 'a\<Colon>ordered_euclidean_space). {..< a})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using halfspace_le_span_lessThan halfspace_span_halfspace_ge open_span_halfspace by auto show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma borel_eq_greaterThanLessThan: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, b). {a <..< (b :: 'a \<Colon> ordered_euclidean_space)})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto show "sets borel \<subseteq> sets ?SIGMA" proof - have "sigma_algebra ?SIGMA" by (rule sigma_algebra_sigma) auto then interpret sigma_algebra ?SIGMA . { fix M :: "'a set" assume "M \<in> {S. open S}" then have "open M" by simp have "M \<in> sets ?SIGMA" apply (subst open_UNION[OF `open M`]) apply (safe intro!: countable_UN) by (auto simp add: sigma_def intro!: sigma_sets.Basic) } then show ?thesis unfolding borel_def by (intro sets_sigma_subset) auto qed qed auto lemma borel_eq_atLeastLessThan: "borel = sigma \<lparr>space=UNIV, sets=range (\<lambda>(a, b). {a ..< b :: real})\<rparr>" (is "_ = ?S") proof (intro algebra.equality antisym) interpret sigma_algebra ?S by (rule sigma_algebra_sigma) auto show "sets borel \<subseteq> sets ?S" unfolding borel_eq_lessThan proof (intro sets_sigma_subset subsetI) have move_uminus: "\<And>x y::real. -x \<le> y \<longleftrightarrow> -y \<le> x" by auto fix A :: "real set" assume "A \<in> sets \<lparr>space = UNIV, sets = range lessThan\<rparr>" then obtain x where "A = {..< x}" by auto then have "A = (\<Union>i::nat. {-real i ..< x})" by (auto simp: move_uminus real_arch_simple) then show "A \<in> sets ?S" by (auto simp: sets_sigma intro!: sigma_sets.intros) qed simp show "sets ?S \<subseteq> sets borel" by (intro borel.sets_sigma_subset) auto qed simp_all lemma borel_eq_halfspace_le: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. x$$i \<le> a})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using open_span_halfspace halfspace_span_halfspace_le by auto show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma borel_eq_halfspace_less: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. x$$i < a})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using open_span_halfspace . show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma borel_eq_halfspace_gt: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. a < x$$i})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using halfspace_le_span_halfspace_gt open_span_halfspace halfspace_span_halfspace_le by auto show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma borel_eq_halfspace_ge: "borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. a \<le> x$$i})\<rparr>)" (is "_ = ?SIGMA") proof (intro algebra.equality antisym) show "sets borel \<subseteq> sets ?SIGMA" using halfspace_span_halfspace_ge open_span_halfspace by auto show "sets ?SIGMA \<subseteq> sets borel" by (rule borel.sets_sigma_subset) auto qed auto lemma (in sigma_algebra) borel_measurable_halfspacesI: fixes f :: "'a \<Rightarrow> 'c\<Colon>ordered_euclidean_space" assumes "borel = (sigma \<lparr>space=UNIV, sets=range F\<rparr>)" and "\<And>a i. S a i = f -` F (a,i) \<inter> space M" and "\<And>a i. \<not> i < DIM('c) \<Longrightarrow> S a i \<in> sets M" shows "f \<in> borel_measurable M = (\<forall>i<DIM('c). \<forall>a::real. S a i \<in> sets M)" proof safe fix a :: real and i assume i: "i < DIM('c)" and f: "f \<in> borel_measurable M" then show "S a i \<in> sets M" unfolding assms by (auto intro!: measurable_sets sigma_sets.Basic simp: assms(1) sigma_def) next assume a: "\<forall>i<DIM('c). \<forall>a. S a i \<in> sets M" { fix a i have "S a i \<in> sets M" proof cases assume "i < DIM('c)" with a show ?thesis unfolding assms(2) by simp next assume "\<not> i < DIM('c)" from assms(3)[OF this] show ?thesis . qed } then have "f \<in> measurable M (sigma \<lparr>space=UNIV, sets=range F\<rparr>)" by (auto intro!: measurable_sigma simp: assms(2)) then show "f \<in> borel_measurable M" unfolding measurable_def unfolding assms(1) by simp qed lemma (in sigma_algebra) borel_measurable_iff_halfspace_le: fixes f :: "'a \<Rightarrow> 'c\<Colon>ordered_euclidean_space" shows "f \<in> borel_measurable M = (\<forall>i<DIM('c). \<forall>a. {w \<in> space M. f w $$ i \<le> a} \<in> sets M)" by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_le]) auto lemma (in sigma_algebra) borel_measurable_iff_halfspace_less: fixes f :: "'a \<Rightarrow> 'c\<Colon>ordered_euclidean_space" shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i<DIM('c). \<forall>a. {w \<in> space M. f w $$ i < a} \<in> sets M)" by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_less]) auto lemma (in sigma_algebra) borel_measurable_iff_halfspace_ge: fixes f :: "'a \<Rightarrow> 'c\<Colon>ordered_euclidean_space" shows "f \<in> borel_measurable M = (\<forall>i<DIM('c). \<forall>a. {w \<in> space M. a \<le> f w $$ i} \<in> sets M)" by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_ge]) auto lemma (in sigma_algebra) borel_measurable_iff_halfspace_greater: fixes f :: "'a \<Rightarrow> 'c\<Colon>ordered_euclidean_space" shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i<DIM('c). \<forall>a. {w \<in> space M. a < f w $$ i} \<in> sets M)" by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_gt]) auto lemma (in sigma_algebra) borel_measurable_iff_le: "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w \<le> a} \<in> sets M)" using borel_measurable_iff_halfspace_le[where 'c=real] by simp lemma (in sigma_algebra) borel_measurable_iff_less: "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w < a} \<in> sets M)" using borel_measurable_iff_halfspace_less[where 'c=real] by simp lemma (in sigma_algebra) borel_measurable_iff_ge: "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a \<le> f w} \<in> sets M)" using borel_measurable_iff_halfspace_ge[where 'c=real] by simp lemma (in sigma_algebra) borel_measurable_iff_greater: "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a < f w} \<in> sets M)" using borel_measurable_iff_halfspace_greater[where 'c=real] by simp lemma borel_measurable_euclidean_component: "(\<lambda>x::'a::euclidean_space. x $$ i) \<in> borel_measurable borel" unfolding borel_def[where 'a=real] proof (rule borel.measurable_sigma, simp_all) fix S::"real set" assume "open S" from open_vimage_euclidean_component[OF this] show "(\<lambda>x. x $$ i) -` S \<in> sets borel" by (auto intro: borel_open) qed lemma (in sigma_algebra) borel_measurable_euclidean_space: fixes f :: "'a \<Rightarrow> 'c::ordered_euclidean_space" shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i<DIM('c). (\<lambda>x. f x $$ i) \<in> borel_measurable M)" proof safe fix i assume "f \<in> borel_measurable M" then show "(\<lambda>x. f x $$ i) \<in> borel_measurable M" using measurable_comp[of f _ _ "\<lambda>x. x $$ i", unfolded comp_def] by (auto intro: borel_measurable_euclidean_component) next assume f: "\<forall>i<DIM('c). (\<lambda>x. f x $$ i) \<in> borel_measurable M" then show "f \<in> borel_measurable M" unfolding borel_measurable_iff_halfspace_le by auto qed subsection "Borel measurable operators" lemma (in sigma_algebra) affine_borel_measurable_vector: fixes f :: "'a \<Rightarrow> 'x::real_normed_vector" assumes "f \<in> borel_measurable M" shows "(\<lambda>x. a + b *\<^sub>R f x) \<in> borel_measurable M" proof (rule borel_measurableI) fix S :: "'x set" assume "open S" show "(\<lambda>x. a + b *\<^sub>R f x) -` S \<inter> space M \<in> sets M" proof cases assume "b \<noteq> 0" with `open S` have "open ((\<lambda>x. (- a + x) /\<^sub>R b) ` S)" (is "open ?S") by (auto intro!: open_affinity simp: scaleR_add_right) hence "?S \<in> sets borel" unfolding borel_def by (auto simp: sigma_def intro!: sigma_sets.Basic) moreover from `b \<noteq> 0` have "(\<lambda>x. a + b *\<^sub>R f x) -` S = f -` ?S" apply auto by (rule_tac x="a + b *\<^sub>R f x" in image_eqI, simp_all) ultimately show ?thesis using assms unfolding in_borel_measurable_borel by auto qed simp qed lemma (in sigma_algebra) affine_borel_measurable: fixes g :: "'a \<Rightarrow> real" assumes g: "g \<in> borel_measurable M" shows "(\<lambda>x. a + (g x) * b) \<in> borel_measurable M" using affine_borel_measurable_vector[OF assms] by (simp add: mult_commute) lemma (in sigma_algebra) borel_measurable_add[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "(\<lambda>x. f x + g x) \<in> borel_measurable M" proof - have 1: "\<And>a. {w\<in>space M. a \<le> f w + g w} = {w \<in> space M. a + g w * -1 \<le> f w}" by auto have "\<And>a. (\<lambda>w. a + (g w) * -1) \<in> borel_measurable M" by (rule affine_borel_measurable [OF g]) then have "\<And>a. {w \<in> space M. (\<lambda>w. a + (g w) * -1)(w) \<le> f w} \<in> sets M" using f by auto then have "\<And>a. {w \<in> space M. a \<le> f w + g w} \<in> sets M" by (simp add: 1) then show ?thesis by (simp add: borel_measurable_iff_ge) qed lemma (in sigma_algebra) borel_measurable_setsum[simp, intro]: fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> real" assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M" shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M" proof cases assume "finite S" thus ?thesis using assms by induct auto qed simp lemma (in sigma_algebra) borel_measurable_square: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. (f x)^2) \<in> borel_measurable M" proof - { fix a have "{w \<in> space M. (f w)\<twosuperior> \<le> a} \<in> sets M" proof (cases rule: linorder_cases [of a 0]) case less hence "{w \<in> space M. (f w)\<twosuperior> \<le> a} = {}" by auto (metis less order_le_less_trans power2_less_0) also have "... \<in> sets M" by (rule empty_sets) finally show ?thesis . next case equal hence "{w \<in> space M. (f w)\<twosuperior> \<le> a} = {w \<in> space M. f w \<le> 0} \<inter> {w \<in> space M. 0 \<le> f w}" by auto also have "... \<in> sets M" apply (insert f) apply (rule Int) apply (simp add: borel_measurable_iff_le) apply (simp add: borel_measurable_iff_ge) done finally show ?thesis . next case greater have "\<forall>x. (f x ^ 2 \<le> sqrt a ^ 2) = (- sqrt a \<le> f x & f x \<le> sqrt a)" by (metis abs_le_interval_iff abs_of_pos greater real_sqrt_abs real_sqrt_le_iff real_sqrt_power) hence "{w \<in> space M. (f w)\<twosuperior> \<le> a} = {w \<in> space M. -(sqrt a) \<le> f w} \<inter> {w \<in> space M. f w \<le> sqrt a}" using greater by auto also have "... \<in> sets M" apply (insert f) apply (rule Int) apply (simp add: borel_measurable_iff_ge) apply (simp add: borel_measurable_iff_le) done finally show ?thesis . qed } thus ?thesis by (auto simp add: borel_measurable_iff_le) qed lemma times_eq_sum_squares: fixes x::real shows"x*y = ((x+y)^2)/4 - ((x-y)^ 2)/4" by (simp add: power2_eq_square ring_distribs diff_divide_distrib [symmetric]) lemma (in sigma_algebra) borel_measurable_uminus[simp, intro]: fixes g :: "'a \<Rightarrow> real" assumes g: "g \<in> borel_measurable M" shows "(\<lambda>x. - g x) \<in> borel_measurable M" proof - have "(\<lambda>x. - g x) = (\<lambda>x. 0 + (g x) * -1)" by simp also have "... \<in> borel_measurable M" by (fast intro: affine_borel_measurable g) finally show ?thesis . qed lemma (in sigma_algebra) borel_measurable_times[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "(\<lambda>x. f x * g x) \<in> borel_measurable M" proof - have 1: "(\<lambda>x. 0 + (f x + g x)\<twosuperior> * inverse 4) \<in> borel_measurable M" using assms by (fast intro: affine_borel_measurable borel_measurable_square) have "(\<lambda>x. -((f x + -g x) ^ 2 * inverse 4)) = (\<lambda>x. 0 + ((f x + -g x) ^ 2 * inverse -4))" by (simp add: minus_divide_right) also have "... \<in> borel_measurable M" using f g by (fast intro: affine_borel_measurable borel_measurable_square f g) finally have 2: "(\<lambda>x. -((f x + -g x) ^ 2 * inverse 4)) \<in> borel_measurable M" . show ?thesis apply (simp add: times_eq_sum_squares diff_minus) using 1 2 by simp qed lemma (in sigma_algebra) borel_measurable_setprod[simp, intro]: fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> real" assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M" shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M" proof cases assume "finite S" thus ?thesis using assms by induct auto qed simp lemma (in sigma_algebra) borel_measurable_diff[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "(\<lambda>x. f x - g x) \<in> borel_measurable M" unfolding diff_minus using assms by fast lemma (in sigma_algebra) borel_measurable_inverse[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes "f \<in> borel_measurable M" shows "(\<lambda>x. inverse (f x)) \<in> borel_measurable M" unfolding borel_measurable_iff_ge unfolding inverse_eq_divide proof safe fix a :: real have *: "{w \<in> space M. a \<le> 1 / f w} = ({w \<in> space M. 0 < f w} \<inter> {w \<in> space M. a * f w \<le> 1}) \<union> ({w \<in> space M. f w < 0} \<inter> {w \<in> space M. 1 \<le> a * f w}) \<union> ({w \<in> space M. f w = 0} \<inter> {w \<in> space M. a \<le> 0})" by (auto simp: le_divide_eq) show "{w \<in> space M. a \<le> 1 / f w} \<in> sets M" using assms unfolding * by (auto intro!: Int Un) qed lemma (in sigma_algebra) borel_measurable_divide[simp, intro]: fixes f :: "'a \<Rightarrow> real" assumes "f \<in> borel_measurable M" and "g \<in> borel_measurable M" shows "(\<lambda>x. f x / g x) \<in> borel_measurable M" unfolding field_divide_inverse by (rule borel_measurable_inverse borel_measurable_times assms)+ lemma (in sigma_algebra) borel_measurable_max[intro, simp]: fixes f g :: "'a \<Rightarrow> real" assumes "f \<in> borel_measurable M" assumes "g \<in> borel_measurable M" shows "(\<lambda>x. max (g x) (f x)) \<in> borel_measurable M" unfolding borel_measurable_iff_le proof safe fix a have "{x \<in> space M. max (g x) (f x) \<le> a} = {x \<in> space M. g x \<le> a} \<inter> {x \<in> space M. f x \<le> a}" by auto thus "{x \<in> space M. max (g x) (f x) \<le> a} \<in> sets M" using assms unfolding borel_measurable_iff_le by (auto intro!: Int) qed lemma (in sigma_algebra) borel_measurable_min[intro, simp]: fixes f g :: "'a \<Rightarrow> real" assumes "f \<in> borel_measurable M" assumes "g \<in> borel_measurable M" shows "(\<lambda>x. min (g x) (f x)) \<in> borel_measurable M" unfolding borel_measurable_iff_ge proof safe fix a have "{x \<in> space M. a \<le> min (g x) (f x)} = {x \<in> space M. a \<le> g x} \<inter> {x \<in> space M. a \<le> f x}" by auto thus "{x \<in> space M. a \<le> min (g x) (f x)} \<in> sets M" using assms unfolding borel_measurable_iff_ge by (auto intro!: Int) qed lemma (in sigma_algebra) borel_measurable_abs[simp, intro]: assumes "f \<in> borel_measurable M" shows "(\<lambda>x. \<bar>f x :: real\<bar>) \<in> borel_measurable M" proof - have *: "\<And>x. \<bar>f x\<bar> = max 0 (f x) + max 0 (- f x)" by (simp add: max_def) show ?thesis unfolding * using assms by auto qed lemma borel_measurable_nth[simp, intro]: "(\<lambda>x::real^'n. x $ i) \<in> borel_measurable borel" using borel_measurable_euclidean_component unfolding nth_conv_component by auto lemma borel_measurable_continuous_on1: fixes f :: "'a::topological_space \<Rightarrow> 'b::t1_space" assumes "continuous_on UNIV f" shows "f \<in> borel_measurable borel" apply(rule borel.borel_measurableI) using continuous_open_preimage[OF assms] unfolding vimage_def by auto lemma borel_measurable_continuous_on: fixes f :: "'a::topological_space \<Rightarrow> 'b::t1_space" assumes cont: "continuous_on A f" "open A" shows "(\<lambda>x. if x \<in> A then f x else c) \<in> borel_measurable borel" (is "?f \<in> _") proof (rule borel.borel_measurableI) fix S :: "'b set" assume "open S" then have "open {x\<in>A. f x \<in> S}" by (intro continuous_open_preimage[OF cont]) auto then have *: "{x\<in>A. f x \<in> S} \<in> sets borel" by auto have "?f -` S \<inter> space borel = {x\<in>A. f x \<in> S} \<union> (if c \<in> S then space borel - A else {})" by (auto split: split_if_asm) also have "\<dots> \<in> sets borel" using * `open A` by (auto simp del: space_borel intro!: borel.Un) finally show "?f -` S \<inter> space borel \<in> sets borel" . qed lemma (in sigma_algebra) convex_measurable: fixes a b :: real assumes X: "X \<in> borel_measurable M" "X ` space M \<subseteq> { a <..< b}" assumes q: "convex_on { a <..< b} q" shows "q \<circ> X \<in> borel_measurable M" proof - have "(\<lambda>x. if x \<in> {a <..< b} then q x else 0) \<in> borel_measurable borel" proof (rule borel_measurable_continuous_on) show "open {a<..<b}" by auto from this q show "continuous_on {a<..<b} q" by (rule convex_on_continuous) qed then have "(\<lambda>x. if x \<in> {a <..< b} then q x else 0) \<circ> X \<in> borel_measurable M" (is ?qX) using X by (intro measurable_comp) auto moreover have "?qX \<longleftrightarrow> q \<circ> X \<in> borel_measurable M" using X by (intro measurable_cong) auto ultimately show ?thesis by simp qed lemma borel_measurable_borel_log: assumes "1 < b" shows "log b \<in> borel_measurable borel" proof - { fix x :: real assume x: "x \<le> 0" { fix x::real assume "x \<le> 0" then have "\<And>u. exp u = x \<longleftrightarrow> False" by auto } from this[of x] x this[of 0] have "log b 0 = log b x" by (auto simp: ln_def log_def) } note log_imp = this have "(\<lambda>x. if x \<in> {0<..} then log b x else log b 0) \<in> borel_measurable borel" proof (rule borel_measurable_continuous_on) show "continuous_on {0<..} (log b)" by (auto intro!: continuous_at_imp_continuous_on DERIV_log DERIV_isCont simp: continuous_isCont[symmetric]) show "open ({0<..}::real set)" by auto qed also have "(\<lambda>x. if x \<in> {0<..} then log b x else log b 0) = log b" by (simp add: fun_eq_iff not_less log_imp) finally show ?thesis . qed lemma (in sigma_algebra) borel_measurable_log[simp,intro]: assumes f: "f \<in> borel_measurable M" and "1 < b" shows "(\<lambda>x. log b (f x)) \<in> borel_measurable M" using measurable_comp[OF f borel_measurable_borel_log[OF `1 < b`]] by (simp add: comp_def) subsection "Borel space on the extended reals" lemma borel_measurable_ereal_borel: "ereal \<in> borel_measurable borel" unfolding borel_def[where 'a=ereal] proof (rule borel.measurable_sigma) fix X :: "ereal set" assume "X \<in> sets \<lparr>space = UNIV, sets = {S. open S} \<rparr>" then have "open X" by simp then have "open (ereal -` X \<inter> space borel)" by (simp add: open_ereal_vimage) then show "ereal -` X \<inter> space borel \<in> sets borel" by auto qed auto lemma (in sigma_algebra) borel_measurable_ereal[simp, intro]: assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M" using measurable_comp[OF f borel_measurable_ereal_borel] unfolding comp_def . lemma borel_measurable_real_of_ereal_borel: "(real :: ereal \<Rightarrow> real) \<in> borel_measurable borel" unfolding borel_def[where 'a=real] proof (rule borel.measurable_sigma) fix B :: "real set" assume "B \<in> sets \<lparr>space = UNIV, sets = {S. open S} \<rparr>" then have "open B" by simp have *: "ereal -` real -` (B - {0}) = B - {0}" by auto have open_real: "open (real -` (B - {0}) :: ereal set)" unfolding open_ereal_def * using `open B` by auto show "(real -` B \<inter> space borel :: ereal set) \<in> sets borel" proof cases assume "0 \<in> B" then have *: "real -` B = real -` (B - {0}) \<union> {-\<infinity>, \<infinity>, 0::ereal}" by (auto simp add: real_of_ereal_eq_0) then show "(real -` B :: ereal set) \<inter> space borel \<in> sets borel" using open_real by auto next assume "0 \<notin> B" then have *: "(real -` B :: ereal set) = real -` (B - {0})" by (auto simp add: real_of_ereal_eq_0) then show "(real -` B :: ereal set) \<inter> space borel \<in> sets borel" using open_real by auto qed qed auto lemma (in sigma_algebra) borel_measurable_real_of_ereal[simp, intro]: assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. real (f x :: ereal)) \<in> borel_measurable M" using measurable_comp[OF f borel_measurable_real_of_ereal_borel] unfolding comp_def . lemma (in sigma_algebra) borel_measurable_ereal_iff: shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M" proof assume "(\<lambda>x. ereal (f x)) \<in> borel_measurable M" from borel_measurable_real_of_ereal[OF this] show "f \<in> borel_measurable M" by auto qed auto lemma (in sigma_algebra) borel_measurable_ereal_iff_real: fixes f :: "'a \<Rightarrow> ereal" shows "f \<in> borel_measurable M \<longleftrightarrow> ((\<lambda>x. real (f x)) \<in> borel_measurable M \<and> f -` {\<infinity>} \<inter> space M \<in> sets M \<and> f -` {-\<infinity>} \<inter> space M \<in> sets M)" proof safe assume *: "(\<lambda>x. real (f x)) \<in> borel_measurable M" "f -` {\<infinity>} \<inter> space M \<in> sets M" "f -` {-\<infinity>} \<inter> space M \<in> sets M" have "f -` {\<infinity>} \<inter> space M = {x\<in>space M. f x = \<infinity>}" "f -` {-\<infinity>} \<inter> space M = {x\<in>space M. f x = -\<infinity>}" by auto with * have **: "{x\<in>space M. f x = \<infinity>} \<in> sets M" "{x\<in>space M. f x = -\<infinity>} \<in> sets M" by simp_all let "?f x" = "if f x = \<infinity> then \<infinity> else if f x = -\<infinity> then -\<infinity> else ereal (real (f x))" have "?f \<in> borel_measurable M" using * ** by (intro measurable_If) auto also have "?f = f" by (auto simp: fun_eq_iff ereal_real) finally show "f \<in> borel_measurable M" . qed (auto intro: measurable_sets borel_measurable_real_of_ereal) lemma (in sigma_algebra) less_eq_ge_measurable: fixes f :: "'a \<Rightarrow> 'c::linorder" shows "f -` {a <..} \<inter> space M \<in> sets M \<longleftrightarrow> f -` {..a} \<inter> space M \<in> sets M" proof assume "f -` {a <..} \<inter> space M \<in> sets M" moreover have "f -` {..a} \<inter> space M = space M - f -` {a <..} \<inter> space M" by auto ultimately show "f -` {..a} \<inter> space M \<in> sets M" by auto next assume "f -` {..a} \<inter> space M \<in> sets M" moreover have "f -` {a <..} \<inter> space M = space M - f -` {..a} \<inter> space M" by auto ultimately show "f -` {a <..} \<inter> space M \<in> sets M" by auto qed lemma (in sigma_algebra) greater_eq_le_measurable: fixes f :: "'a \<Rightarrow> 'c::linorder" shows "f -` {..< a} \<inter> space M \<in> sets M \<longleftrightarrow> f -` {a ..} \<inter> space M \<in> sets M" proof assume "f -` {a ..} \<inter> space M \<in> sets M" moreover have "f -` {..< a} \<inter> space M = space M - f -` {a ..} \<inter> space M" by auto ultimately show "f -` {..< a} \<inter> space M \<in> sets M" by auto next assume "f -` {..< a} \<inter> space M \<in> sets M" moreover have "f -` {a ..} \<inter> space M = space M - f -` {..< a} \<inter> space M" by auto ultimately show "f -` {a ..} \<inter> space M \<in> sets M" by auto qed lemma (in sigma_algebra) borel_measurable_uminus_borel_ereal: "(uminus :: ereal \<Rightarrow> ereal) \<in> borel_measurable borel" proof (subst borel_def, rule borel.measurable_sigma) fix X :: "ereal set" assume "X \<in> sets \<lparr>space = UNIV, sets = {S. open S}\<rparr>" then have "open X" by simp have "uminus -` X = uminus ` X" by (force simp: image_iff) then have "open (uminus -` X)" using `open X` ereal_open_uminus by auto then show "uminus -` X \<inter> space borel \<in> sets borel" by auto qed auto lemma (in sigma_algebra) borel_measurable_uminus_ereal[intro]: assumes "f \<in> borel_measurable M" shows "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M" using measurable_comp[OF assms borel_measurable_uminus_borel_ereal] by (simp add: comp_def) lemma (in sigma_algebra) borel_measurable_uminus_eq_ereal[simp]: "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M" (is "?l = ?r") proof assume ?l from borel_measurable_uminus_ereal[OF this] show ?r by simp qed auto lemma (in sigma_algebra) borel_measurable_eq_atMost_ereal: fixes f :: "'a \<Rightarrow> ereal" shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..a} \<inter> space M \<in> sets M)" proof (intro iffI allI) assume pos[rule_format]: "\<forall>a. f -` {..a} \<inter> space M \<in> sets M" show "f \<in> borel_measurable M" unfolding borel_measurable_ereal_iff_real borel_measurable_iff_le proof (intro conjI allI) fix a :: real { fix x :: ereal assume *: "\<forall>i::nat. real i < x" have "x = \<infinity>" proof (rule ereal_top) fix B from reals_Archimedean2[of B] guess n .. then have "ereal B < real n" by auto with * show "B \<le> x" by (metis less_trans less_imp_le) qed } then have "f -` {\<infinity>} \<inter> space M = space M - (\<Union>i::nat. f -` {.. real i} \<inter> space M)" by (auto simp: not_le) then show "f -` {\<infinity>} \<inter> space M \<in> sets M" using pos by (auto simp del: UN_simps intro!: Diff) moreover have "{-\<infinity>::ereal} = {..-\<infinity>}" by auto then show "f -` {-\<infinity>} \<inter> space M \<in> sets M" using pos by auto moreover have "{x\<in>space M. f x \<le> ereal a} \<in> sets M" using pos[of "ereal a"] by (simp add: vimage_def Int_def conj_commute) moreover have "{w \<in> space M. real (f w) \<le> a} = (if a < 0 then {w \<in> space M. f w \<le> ereal a} - f -` {-\<infinity>} \<inter> space M else {w \<in> space M. f w \<le> ereal a} \<union> (f -` {\<infinity>} \<inter> space M) \<union> (f -` {-\<infinity>} \<inter> space M))" (is "?l = ?r") proof (intro set_eqI) fix x show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" by (cases "f x") auto qed ultimately show "{w \<in> space M. real (f w) \<le> a} \<in> sets M" by auto qed qed (simp add: measurable_sets) lemma (in sigma_algebra) borel_measurable_eq_atLeast_ereal: "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a..} \<inter> space M \<in> sets M)" proof assume pos: "\<forall>a. f -` {a..} \<inter> space M \<in> sets M" moreover have "\<And>a. (\<lambda>x. - f x) -` {..a} = f -` {-a ..}" by (auto simp: ereal_uminus_le_reorder) ultimately have "(\<lambda>x. - f x) \<in> borel_measurable M" unfolding borel_measurable_eq_atMost_ereal by auto then show "f \<in> borel_measurable M" by simp qed (simp add: measurable_sets) lemma (in sigma_algebra) borel_measurable_ereal_iff_less: "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..< a} \<inter> space M \<in> sets M)" unfolding borel_measurable_eq_atLeast_ereal greater_eq_le_measurable .. lemma (in sigma_algebra) borel_measurable_ereal_iff_ge: "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a <..} \<inter> space M \<in> sets M)" unfolding borel_measurable_eq_atMost_ereal less_eq_ge_measurable .. lemma (in sigma_algebra) borel_measurable_ereal_eq_const: fixes f :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" shows "{x\<in>space M. f x = c} \<in> sets M" proof - have "{x\<in>space M. f x = c} = (f -` {c} \<inter> space M)" by auto then show ?thesis using assms by (auto intro!: measurable_sets) qed lemma (in sigma_algebra) borel_measurable_ereal_neq_const: fixes f :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" shows "{x\<in>space M. f x \<noteq> c} \<in> sets M" proof - have "{x\<in>space M. f x \<noteq> c} = space M - (f -` {c} \<inter> space M)" by auto then show ?thesis using assms by (auto intro!: measurable_sets) qed lemma (in sigma_algebra) borel_measurable_ereal_le[intro,simp]: fixes f g :: "'a \<Rightarrow> ereal" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{x \<in> space M. f x \<le> g x} \<in> sets M" proof - have "{x \<in> space M. f x \<le> g x} = {x \<in> space M. real (f x) \<le> real (g x)} - (f -` {\<infinity>, -\<infinity>} \<inter> space M \<union> g -` {\<infinity>, -\<infinity>} \<inter> space M) \<union> f -` {-\<infinity>} \<inter> space M \<union> g -` {\<infinity>} \<inter> space M" (is "?l = ?r") proof (intro set_eqI) fix x show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" by (cases rule: ereal2_cases[of "f x" "g x"]) auto qed with f g show ?thesis by (auto intro!: Un simp: measurable_sets) qed lemma (in sigma_algebra) borel_measurable_ereal_less[intro,simp]: fixes f :: "'a \<Rightarrow> ereal" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{x \<in> space M. f x < g x} \<in> sets M" proof - have "{x \<in> space M. f x < g x} = space M - {x \<in> space M. g x \<le> f x}" by auto then show ?thesis using g f by auto qed lemma (in sigma_algebra) borel_measurable_ereal_eq[intro,simp]: fixes f :: "'a \<Rightarrow> ereal" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{w \<in> space M. f w = g w} \<in> sets M" proof - have "{x \<in> space M. f x = g x} = {x \<in> space M. g x \<le> f x} \<inter> {x \<in> space M. f x \<le> g x}" by auto then show ?thesis using g f by auto qed lemma (in sigma_algebra) borel_measurable_ereal_neq[intro,simp]: fixes f :: "'a \<Rightarrow> ereal" assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "{w \<in> space M. f w \<noteq> g w} \<in> sets M" proof - have "{w \<in> space M. f w \<noteq> g w} = space M - {w \<in> space M. f w = g w}" by auto thus ?thesis using f g by auto qed lemma (in sigma_algebra) split_sets: "{x\<in>space M. P x \<or> Q x} = {x\<in>space M. P x} \<union> {x\<in>space M. Q x}" "{x\<in>space M. P x \<and> Q x} = {x\<in>space M. P x} \<inter> {x\<in>space M. Q x}" by auto lemma (in sigma_algebra) borel_measurable_ereal_add[intro, simp]: fixes f :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" "g \<in> borel_measurable M" shows "(\<lambda>x. f x + g x) \<in> borel_measurable M" proof - { fix x assume "x \<in> space M" then have "f x + g x = (if f x = \<infinity> \<or> g x = \<infinity> then \<infinity> else if f x = -\<infinity> \<or> g x = -\<infinity> then -\<infinity> else ereal (real (f x) + real (g x)))" by (cases rule: ereal2_cases[of "f x" "g x"]) auto } with assms show ?thesis by (auto cong: measurable_cong simp: split_sets intro!: Un measurable_If measurable_sets) qed lemma (in sigma_algebra) borel_measurable_ereal_setsum[simp, intro]: fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal" assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M" shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M" proof cases assume "finite S" thus ?thesis using assms by induct auto qed (simp add: borel_measurable_const) lemma (in sigma_algebra) borel_measurable_ereal_abs[intro, simp]: fixes f :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" shows "(\<lambda>x. \<bar>f x\<bar>) \<in> borel_measurable M" proof - { fix x have "\<bar>f x\<bar> = (if 0 \<le> f x then f x else - f x)" by auto } then show ?thesis using assms by (auto intro!: measurable_If) qed lemma (in sigma_algebra) borel_measurable_ereal_times[intro, simp]: fixes f :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" "g \<in> borel_measurable M" shows "(\<lambda>x. f x * g x) \<in> borel_measurable M" proof - { fix f g :: "'a \<Rightarrow> ereal" assume b: "f \<in> borel_measurable M" "g \<in> borel_measurable M" and pos: "\<And>x. 0 \<le> f x" "\<And>x. 0 \<le> g x" { fix x have *: "f x * g x = (if f x = 0 \<or> g x = 0 then 0 else if f x = \<infinity> \<or> g x = \<infinity> then \<infinity> else ereal (real (f x) * real (g x)))" apply (cases rule: ereal2_cases[of "f x" "g x"]) using pos[of x] by auto } with b have "(\<lambda>x. f x * g x) \<in> borel_measurable M" by (auto cong: measurable_cong simp: split_sets intro!: Un measurable_If measurable_sets) } note pos_times = this have *: "(\<lambda>x. f x * g x) = (\<lambda>x. if 0 \<le> f x \<and> 0 \<le> g x \<or> f x < 0 \<and> g x < 0 then \<bar>f x\<bar> * \<bar>g x\<bar> else - (\<bar>f x\<bar> * \<bar>g x\<bar>))" by (auto simp: fun_eq_iff) show ?thesis using assms unfolding * by (intro measurable_If pos_times borel_measurable_uminus_ereal) (auto simp: split_sets intro!: Int) qed lemma (in sigma_algebra) borel_measurable_ereal_setprod[simp, intro]: fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal" assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M" shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M" proof cases assume "finite S" thus ?thesis using assms by induct auto qed simp lemma (in sigma_algebra) borel_measurable_ereal_min[simp, intro]: fixes f g :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" assumes "g \<in> borel_measurable M" shows "(\<lambda>x. min (g x) (f x)) \<in> borel_measurable M" using assms unfolding min_def by (auto intro!: measurable_If) lemma (in sigma_algebra) borel_measurable_ereal_max[simp, intro]: fixes f g :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" and "g \<in> borel_measurable M" shows "(\<lambda>x. max (g x) (f x)) \<in> borel_measurable M" using assms unfolding max_def by (auto intro!: measurable_If) lemma (in sigma_algebra) borel_measurable_SUP[simp, intro]: fixes f :: "'d\<Colon>countable \<Rightarrow> 'a \<Rightarrow> ereal" assumes "\<And>i. i \<in> A \<Longrightarrow> f i \<in> borel_measurable M" shows "(\<lambda>x. SUP i : A. f i x) \<in> borel_measurable M" (is "?sup \<in> borel_measurable M") unfolding borel_measurable_ereal_iff_ge proof fix a have "?sup -` {a<..} \<inter> space M = (\<Union>i\<in>A. {x\<in>space M. a < f i x})" by (auto simp: less_SUP_iff SUP_apply) then show "?sup -` {a<..} \<inter> space M \<in> sets M" using assms by auto qed lemma (in sigma_algebra) borel_measurable_INF[simp, intro]: fixes f :: "'d :: countable \<Rightarrow> 'a \<Rightarrow> ereal" assumes "\<And>i. i \<in> A \<Longrightarrow> f i \<in> borel_measurable M" shows "(\<lambda>x. INF i : A. f i x) \<in> borel_measurable M" (is "?inf \<in> borel_measurable M") unfolding borel_measurable_ereal_iff_less proof fix a have "?inf -` {..<a} \<inter> space M = (\<Union>i\<in>A. {x\<in>space M. f i x < a})" by (auto simp: INF_less_iff INF_apply) then show "?inf -` {..<a} \<inter> space M \<in> sets M" using assms by auto qed lemma (in sigma_algebra) borel_measurable_liminf[simp, intro]: fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal" assumes "\<And>i. f i \<in> borel_measurable M" shows "(\<lambda>x. liminf (\<lambda>i. f i x)) \<in> borel_measurable M" unfolding liminf_SUPR_INFI using assms by auto lemma (in sigma_algebra) borel_measurable_limsup[simp, intro]: fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal" assumes "\<And>i. f i \<in> borel_measurable M" shows "(\<lambda>x. limsup (\<lambda>i. f i x)) \<in> borel_measurable M" unfolding limsup_INFI_SUPR using assms by auto lemma (in sigma_algebra) borel_measurable_ereal_diff[simp, intro]: fixes f g :: "'a \<Rightarrow> ereal" assumes "f \<in> borel_measurable M" assumes "g \<in> borel_measurable M" shows "(\<lambda>x. f x - g x) \<in> borel_measurable M" unfolding minus_ereal_def using assms by auto lemma (in sigma_algebra) borel_measurable_psuminf[simp, intro]: fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal" assumes "\<And>i. f i \<in> borel_measurable M" and pos: "\<And>i x. x \<in> space M \<Longrightarrow> 0 \<le> f i x" shows "(\<lambda>x. (\<Sum>i. f i x)) \<in> borel_measurable M" apply (subst measurable_cong) apply (subst suminf_ereal_eq_SUPR) apply (rule pos) using assms by auto section "LIMSEQ is borel measurable" lemma (in sigma_algebra) borel_measurable_LIMSEQ: fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> real" assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) ----> u' x" and u: "\<And>i. u i \<in> borel_measurable M" shows "u' \<in> borel_measurable M" proof - have "\<And>x. x \<in> space M \<Longrightarrow> liminf (\<lambda>n. ereal (u n x)) = ereal (u' x)" using u' by (simp add: lim_imp_Liminf trivial_limit_sequentially lim_ereal) moreover from u have "(\<lambda>x. liminf (\<lambda>n. ereal (u n x))) \<in> borel_measurable M" by auto ultimately show ?thesis by (simp cong: measurable_cong add: borel_measurable_ereal_iff) qed end