| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45777 | c36637603821 |
| child 46731 | 5302e932d1e5 |
| permissions | -rw-r--r-- |
(* Title: HOL/Probability/Infinite_Product_Measure.thy Author: Johannes Hölzl, TU München *) header {*Infinite Product Measure*} theory Infinite_Product_Measure imports Probability_Measure begin lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B" unfolding restrict_def extensional_def by auto lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)" unfolding restrict_def by (simp add: fun_eq_iff) lemma split_merge: "P (merge I x J y i) \<longleftrightarrow> (i \<in> I \<longrightarrow> P (x i)) \<and> (i \<in> J - I \<longrightarrow> P (y i)) \<and> (i \<notin> I \<union> J \<longrightarrow> P undefined)" unfolding merge_def by auto lemma extensional_merge_sub: "I \<union> J \<subseteq> K \<Longrightarrow> merge I x J y \<in> extensional K" unfolding merge_def extensional_def by auto lemma injective_vimage_restrict: assumes J: "J \<subseteq> I" and sets: "A \<subseteq> (\<Pi>\<^isub>E i\<in>J. S i)" "B \<subseteq> (\<Pi>\<^isub>E i\<in>J. S i)" and ne: "(\<Pi>\<^isub>E i\<in>I. S i) \<noteq> {}" and eq: "(\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^isub>E i\<in>I. S i) = (\<lambda>x. restrict x J) -` B \<inter> (\<Pi>\<^isub>E i\<in>I. S i)" shows "A = B" proof (intro set_eqI) fix x from ne obtain y where y: "\<And>i. i \<in> I \<Longrightarrow> y i \<in> S i" by auto have "J \<inter> (I - J) = {}" by auto show "x \<in> A \<longleftrightarrow> x \<in> B" proof cases assume x: "x \<in> (\<Pi>\<^isub>E i\<in>J. S i)" have "x \<in> A \<longleftrightarrow> merge J x (I - J) y \<in> (\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^isub>E i\<in>I. S i)" using y x `J \<subseteq> I` by (auto simp add: Pi_iff extensional_restrict extensional_merge_sub split: split_merge) then show "x \<in> A \<longleftrightarrow> x \<in> B" using y x `J \<subseteq> I` by (auto simp add: Pi_iff extensional_restrict extensional_merge_sub eq split: split_merge) next assume "x \<notin> (\<Pi>\<^isub>E i\<in>J. S i)" with sets show "x \<in> A \<longleftrightarrow> x \<in> B" by auto qed qed lemma (in product_prob_space) measure_preserving_restrict: assumes "J \<noteq> {}" "J \<subseteq> K" "finite K" shows "(\<lambda>f. restrict f J) \<in> measure_preserving (\<Pi>\<^isub>M i\<in>K. M i) (\<Pi>\<^isub>M i\<in>J. M i)" (is "?R \<in> _") proof - interpret K: finite_product_prob_space M K by default fact have J: "J \<noteq> {}" "finite J" using assms by (auto simp add: finite_subset) interpret J: finite_product_prob_space M J by default (insert J, auto) from J.sigma_finite_pairs guess F .. note F = this then have [simp,intro]: "\<And>k i. k \<in> J \<Longrightarrow> F k i \<in> sets (M k)" by auto let "?F i" = "\<Pi>\<^isub>E k\<in>J. F k i" let ?J = "product_algebra_generator J M \<lparr> measure := measure (Pi\<^isub>M J M) \<rparr>" have "?R \<in> measure_preserving (\<Pi>\<^isub>M i\<in>K. M i) (sigma ?J)" proof (rule K.measure_preserving_Int_stable) show "Int_stable ?J" by (auto simp: Int_stable_def product_algebra_generator_def PiE_Int) show "range ?F \<subseteq> sets ?J" "incseq ?F" "(\<Union>i. ?F i) = space ?J" using F by auto show "\<And>i. measure ?J (?F i) \<noteq> \<infinity>" using F by (simp add: J.measure_times setprod_PInf) have "measure_space (Pi\<^isub>M J M)" by default then show "measure_space (sigma ?J)" by (simp add: product_algebra_def sigma_def) show "?R \<in> measure_preserving (Pi\<^isub>M K M) ?J" proof (simp add: measure_preserving_def measurable_def product_algebra_generator_def del: vimage_Int, safe intro!: restrict_extensional) fix x k assume "k \<in> J" "x \<in> (\<Pi> i\<in>K. space (M i))" then show "x k \<in> space (M k)" using `J \<subseteq> K` by auto next fix E assume "E \<in> (\<Pi> i\<in>J. sets (M i))" then have E: "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets (M j)" by auto then have *: "?R -` Pi\<^isub>E J E \<inter> (\<Pi>\<^isub>E i\<in>K. space (M i)) = (\<Pi>\<^isub>E i\<in>K. if i \<in> J then E i else space (M i))" (is "?X = Pi\<^isub>E K ?M") using `J \<subseteq> K` sets_into_space by (auto simp: Pi_iff split: split_if_asm) blast+ with E show "?X \<in> sets (Pi\<^isub>M K M)" by (auto intro!: product_algebra_generatorI) have "measure (Pi\<^isub>M J M) (Pi\<^isub>E J E) = (\<Prod>i\<in>J. measure (M i) (?M i))" using E by (simp add: J.measure_times) also have "\<dots> = measure (Pi\<^isub>M K M) ?X" unfolding * using E `finite K` `J \<subseteq> K` by (auto simp: K.measure_times M.measure_space_1 cong del: setprod_cong intro!: setprod_mono_one_left) finally show "measure (Pi\<^isub>M J M) (Pi\<^isub>E J E) = measure (Pi\<^isub>M K M) ?X" . qed qed then show ?thesis by (simp add: product_algebra_def sigma_def) qed lemma (in product_prob_space) measurable_restrict: assumes *: "J \<noteq> {}" "J \<subseteq> K" "finite K" shows "(\<lambda>f. restrict f J) \<in> measurable (\<Pi>\<^isub>M i\<in>K. M i) (\<Pi>\<^isub>M i\<in>J. M i)" using measure_preserving_restrict[OF *] by (rule measure_preservingD2) definition (in product_prob_space) "emb J K X = (\<lambda>x. restrict x K) -` X \<inter> space (Pi\<^isub>M J M)" lemma (in product_prob_space) emb_trans[simp]: "J \<subseteq> K \<Longrightarrow> K \<subseteq> L \<Longrightarrow> emb L K (emb K J X) = emb L J X" by (auto simp add: Int_absorb1 emb_def) lemma (in product_prob_space) emb_empty[simp]: "emb K J {} = {}" by (simp add: emb_def) lemma (in product_prob_space) emb_Pi: assumes "X \<in> (\<Pi> j\<in>J. sets (M j))" "J \<subseteq> K" shows "emb K J (Pi\<^isub>E J X) = (\<Pi>\<^isub>E i\<in>K. if i \<in> J then X i else space (M i))" using assms space_closed by (auto simp: emb_def Pi_iff split: split_if_asm) blast+ lemma (in product_prob_space) emb_injective: assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)" assumes "emb L J X = emb L J Y" shows "X = Y" proof - interpret J: finite_product_sigma_finite M J by default fact show "X = Y" proof (rule injective_vimage_restrict) show "X \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))" "Y \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))" using J.sets_into_space sets by auto have "\<forall>i\<in>L. \<exists>x. x \<in> space (M i)" using M.not_empty by auto from bchoice[OF this] show "(\<Pi>\<^isub>E i\<in>L. space (M i)) \<noteq> {}" by auto show "(\<lambda>x. restrict x J) -` X \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i)) = (\<lambda>x. restrict x J) -` Y \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i))" using `emb L J X = emb L J Y` by (simp add: emb_def) qed fact qed lemma (in product_prob_space) emb_id: "B \<subseteq> (\<Pi>\<^isub>E i\<in>L. space (M i)) \<Longrightarrow> emb L L B = B" by (auto simp: emb_def Pi_iff subset_eq extensional_restrict) lemma (in product_prob_space) emb_simps: shows "emb L K (A \<union> B) = emb L K A \<union> emb L K B" and "emb L K (A \<inter> B) = emb L K A \<inter> emb L K B" and "emb L K (A - B) = emb L K A - emb L K B" by (auto simp: emb_def) lemma (in product_prob_space) measurable_emb[intro,simp]: assumes *: "J \<noteq> {}" "J \<subseteq> L" "finite L" "X \<in> sets (Pi\<^isub>M J M)" shows "emb L J X \<in> sets (Pi\<^isub>M L M)" using measurable_restrict[THEN measurable_sets, OF *] by (simp add: emb_def) lemma (in product_prob_space) measure_emb[intro,simp]: assumes *: "J \<noteq> {}" "J \<subseteq> L" "finite L" "X \<in> sets (Pi\<^isub>M J M)" shows "measure (Pi\<^isub>M L M) (emb L J X) = measure (Pi\<^isub>M J M) X" using measure_preserving_restrict[THEN measure_preservingD, OF *] by (simp add: emb_def) definition (in product_prob_space) generator :: "('i \<Rightarrow> 'a) measure_space" where "generator = \<lparr> space = (\<Pi>\<^isub>E i\<in>I. space (M i)), sets = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M)), measure = undefined \<rparr>" lemma (in product_prob_space) generatorI: "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> sets generator" unfolding generator_def by auto lemma (in product_prob_space) generatorI': "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> emb I J X \<in> sets generator" unfolding generator_def by auto lemma (in product_sigma_finite) assumes "I \<inter> J = {}" "finite I" "finite J" and A: "A \<in> sets (Pi\<^isub>M (I \<union> J) M)" shows measure_fold_integral: "measure (Pi\<^isub>M (I \<union> J) M) A = (\<integral>\<^isup>+x. measure (Pi\<^isub>M J M) (merge I x J -` A \<inter> space (Pi\<^isub>M J M)) \<partial>Pi\<^isub>M I M)" (is ?I) and measure_fold_measurable: "(\<lambda>x. measure (Pi\<^isub>M J M) (merge I x J -` A \<inter> space (Pi\<^isub>M J M))) \<in> borel_measurable (Pi\<^isub>M I M)" (is ?B) proof - interpret I: finite_product_sigma_finite M I by default fact interpret J: finite_product_sigma_finite M J by default fact interpret IJ: pair_sigma_finite I.P J.P .. show ?I unfolding measure_fold[OF assms] apply (subst IJ.pair_measure_alt) apply (intro measurable_sets[OF _ A] measurable_merge assms) apply (auto simp: vimage_compose[symmetric] comp_def space_pair_measure intro!: I.positive_integral_cong) done have "(\<lambda>(x, y). merge I x J y) -` A \<inter> space (I.P \<Otimes>\<^isub>M J.P) \<in> sets (I.P \<Otimes>\<^isub>M J.P)" by (intro measurable_sets[OF _ A] measurable_merge assms) from IJ.measure_cut_measurable_fst[OF this] show ?B apply (auto simp: vimage_compose[symmetric] comp_def space_pair_measure) apply (subst (asm) measurable_cong) apply auto done qed definition (in product_prob_space) "\<mu>G A = (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = measure (Pi\<^isub>M J M) X))" lemma (in product_prob_space) \<mu>G_spec: assumes J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)" shows "\<mu>G A = measure (Pi\<^isub>M J M) X" unfolding \<mu>G_def proof (intro the_equality allI impI ballI) fix K Y assume K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "A = emb I K Y" "Y \<in> sets (Pi\<^isub>M K M)" have "measure (Pi\<^isub>M K M) Y = measure (Pi\<^isub>M (K \<union> J) M) (emb (K \<union> J) K Y)" using K J by simp also have "emb (K \<union> J) K Y = emb (K \<union> J) J X" using K J by (simp add: emb_injective[of "K \<union> J" I]) also have "measure (Pi\<^isub>M (K \<union> J) M) (emb (K \<union> J) J X) = measure (Pi\<^isub>M J M) X" using K J by simp finally show "measure (Pi\<^isub>M J M) X = measure (Pi\<^isub>M K M) Y" .. qed (insert J, force) lemma (in product_prob_space) \<mu>G_eq: "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = measure (Pi\<^isub>M J M) X" by (intro \<mu>G_spec) auto lemma (in product_prob_space) generator_Ex: assumes *: "A \<in> sets generator" shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = measure (Pi\<^isub>M J M) X" proof - from * obtain J X where J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)" unfolding generator_def by auto with \<mu>G_spec[OF this] show ?thesis by auto qed lemma (in product_prob_space) generatorE: assumes A: "A \<in> sets generator" obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = measure (Pi\<^isub>M J M) X" proof - from generator_Ex[OF A] obtain X J where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = measure (Pi\<^isub>M J M) X" by auto then show thesis by (intro that) auto qed lemma (in product_prob_space) merge_sets: assumes "finite J" "finite K" "J \<inter> K = {}" and A: "A \<in> sets (Pi\<^isub>M (J \<union> K) M)" and x: "x \<in> space (Pi\<^isub>M J M)" shows "merge J x K -` A \<inter> space (Pi\<^isub>M K M) \<in> sets (Pi\<^isub>M K M)" proof - interpret J: finite_product_sigma_algebra M J by default fact interpret K: finite_product_sigma_algebra M K by default fact interpret JK: pair_sigma_algebra J.P K.P .. from JK.measurable_cut_fst[OF measurable_merge[THEN measurable_sets, OF `J \<inter> K = {}`], OF A, of x] x show ?thesis by (simp add: space_pair_measure comp_def vimage_compose[symmetric]) qed lemma (in product_prob_space) merge_emb: assumes "K \<subseteq> I" "J \<subseteq> I" and y: "y \<in> space (Pi\<^isub>M J M)" shows "(merge J y (I - J) -` emb I K X \<inter> space (Pi\<^isub>M I M)) = emb I (K - J) (merge J y (K - J) -` emb (J \<union> K) K X \<inter> space (Pi\<^isub>M (K - J) M))" proof - have [simp]: "\<And>x J K L. merge J y K (restrict x L) = merge J y (K \<inter> L) x" by (auto simp: restrict_def merge_def) have [simp]: "\<And>x J K L. restrict (merge J y K x) L = merge (J \<inter> L) y (K \<inter> L) x" by (auto simp: restrict_def merge_def) have [simp]: "(I - J) \<inter> K = K - J" using `K \<subseteq> I` `J \<subseteq> I` by auto have [simp]: "(K - J) \<inter> (K \<union> J) = K - J" by auto have [simp]: "(K - J) \<inter> K = K - J" by auto from y `K \<subseteq> I` `J \<subseteq> I` show ?thesis by (simp split: split_merge add: emb_def Pi_iff extensional_merge_sub set_eq_iff) auto qed definition (in product_prob_space) infprod_algebra :: "('i \<Rightarrow> 'a) measure_space" where "infprod_algebra = sigma generator \<lparr> measure := (SOME \<mu>. (\<forall>s\<in>sets generator. \<mu> s = \<mu>G s) \<and> prob_space \<lparr>space = space generator, sets = sets (sigma generator), measure = \<mu>\<rparr>)\<rparr>" syntax "_PiP" :: "[pttrn, 'i set, ('b, 'd) measure_space_scheme] => ('i => 'b, 'd) measure_space_scheme" ("(3PIP _:_./ _)" 10) syntax (xsymbols) "_PiP" :: "[pttrn, 'i set, ('b, 'd) measure_space_scheme] => ('i => 'b, 'd) measure_space_scheme" ("(3\<Pi>\<^isub>P _\<in>_./ _)" 10) syntax (HTML output) "_PiP" :: "[pttrn, 'i set, ('b, 'd) measure_space_scheme] => ('i => 'b, 'd) measure_space_scheme" ("(3\<Pi>\<^isub>P _\<in>_./ _)" 10) abbreviation "Pi\<^isub>P I M \<equiv> product_prob_space.infprod_algebra M I" translations "PIP x:I. M" == "CONST Pi\<^isub>P I (%x. M)" lemma (in product_prob_space) algebra_generator: assumes "I \<noteq> {}" shows "algebra generator" proof let ?G = generator show "sets ?G \<subseteq> Pow (space ?G)" by (auto simp: generator_def emb_def) from `I \<noteq> {}` obtain i where "i \<in> I" by auto then show "{} \<in> sets ?G" by (auto intro!: exI[of _ "{i}"] image_eqI[where x="\<lambda>i. {}"] simp: product_algebra_def sigma_def sigma_sets.Empty generator_def emb_def) from `i \<in> I` show "space ?G \<in> sets ?G" by (auto intro!: exI[of _ "{i}"] image_eqI[where x="Pi\<^isub>E {i} (\<lambda>i. space (M i))"] simp: generator_def emb_def) fix A assume "A \<in> sets ?G" then obtain JA XA where XA: "JA \<noteq> {}" "finite JA" "JA \<subseteq> I" "XA \<in> sets (Pi\<^isub>M JA M)" and A: "A = emb I JA XA" by (auto simp: generator_def) fix B assume "B \<in> sets ?G" then obtain JB XB where XB: "JB \<noteq> {}" "finite JB" "JB \<subseteq> I" "XB \<in> sets (Pi\<^isub>M JB M)" and B: "B = emb I JB XB" by (auto simp: generator_def) let ?RA = "emb (JA \<union> JB) JA XA" let ?RB = "emb (JA \<union> JB) JB XB" interpret JAB: finite_product_sigma_algebra M "JA \<union> JB" by default (insert XA XB, auto) have *: "A - B = emb I (JA \<union> JB) (?RA - ?RB)" "A \<union> B = emb I (JA \<union> JB) (?RA \<union> ?RB)" using XA A XB B by (auto simp: emb_simps) then show "A - B \<in> sets ?G" "A \<union> B \<in> sets ?G" using XA XB by (auto intro!: generatorI') qed lemma (in product_prob_space) positive_\<mu>G: assumes "I \<noteq> {}" shows "positive generator \<mu>G" proof - interpret G!: algebra generator by (rule algebra_generator) fact show ?thesis proof (intro positive_def[THEN iffD2] conjI ballI) from generatorE[OF G.empty_sets] guess J X . note this[simp] interpret J: finite_product_sigma_finite M J by default fact have "X = {}" by (rule emb_injective[of J I]) simp_all then show "\<mu>G {} = 0" by simp next fix A assume "A \<in> sets generator" from generatorE[OF this] guess J X . note this[simp] interpret J: finite_product_sigma_finite M J by default fact show "0 \<le> \<mu>G A" by simp qed qed lemma (in product_prob_space) additive_\<mu>G: assumes "I \<noteq> {}" shows "additive generator \<mu>G" proof - interpret G!: algebra generator by (rule algebra_generator) fact show ?thesis proof (intro additive_def[THEN iffD2] ballI impI) fix A assume "A \<in> sets generator" with generatorE guess J X . note J = this fix B assume "B \<in> sets generator" with generatorE guess K Y . note K = this assume "A \<inter> B = {}" have JK: "J \<union> K \<noteq> {}" "J \<union> K \<subseteq> I" "finite (J \<union> K)" using J K by auto interpret JK: finite_product_sigma_finite M "J \<union> K" by default fact have JK_disj: "emb (J \<union> K) J X \<inter> emb (J \<union> K) K Y = {}" apply (rule emb_injective[of "J \<union> K" I]) apply (insert `A \<inter> B = {}` JK J K) apply (simp_all add: JK.Int emb_simps) done have AB: "A = emb I (J \<union> K) (emb (J \<union> K) J X)" "B = emb I (J \<union> K) (emb (J \<union> K) K Y)" using J K by simp_all then have "\<mu>G (A \<union> B) = \<mu>G (emb I (J \<union> K) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y))" by (simp add: emb_simps) also have "\<dots> = measure (Pi\<^isub>M (J \<union> K) M) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)" using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq JK.Un) also have "\<dots> = \<mu>G A + \<mu>G B" using J K JK_disj by (simp add: JK.measure_additive[symmetric]) finally show "\<mu>G (A \<union> B) = \<mu>G A + \<mu>G B" . qed qed lemma (in product_prob_space) finite_index_eq_finite_product: assumes "finite I" shows "sets (sigma generator) = sets (Pi\<^isub>M I M)" proof safe interpret I: finite_product_sigma_algebra M I by default fact have space_generator[simp]: "space generator = space (Pi\<^isub>M I M)" by (simp add: generator_def product_algebra_def) { fix A assume "A \<in> sets (sigma generator)" then show "A \<in> sets I.P" unfolding sets_sigma proof induct case (Basic A) from generatorE[OF this] guess J X . note J = this with `finite I` have "emb I J X \<in> sets I.P" by auto with `emb I J X = A` show "A \<in> sets I.P" by simp qed auto } { fix A assume A: "A \<in> sets I.P" show "A \<in> sets (sigma generator)" proof cases assume "I = {}" with I.P_empty[OF this] A have "A = space generator \<or> A = {}" unfolding space_generator by auto then show ?thesis by (auto simp: sets_sigma simp del: space_generator intro: sigma_sets.Empty sigma_sets_top) next assume "I \<noteq> {}" note A this moreover with I.sets_into_space have "emb I I A = A" by (intro emb_id) auto ultimately show "A \<in> sets (sigma generator)" using `finite I` unfolding sets_sigma by (intro sigma_sets.Basic generatorI[of I A]) auto qed } qed lemma (in product_prob_space) extend_\<mu>G: "\<exists>\<mu>. (\<forall>s\<in>sets generator. \<mu> s = \<mu>G s) \<and> prob_space \<lparr>space = space generator, sets = sets (sigma generator), measure = \<mu>\<rparr>" proof cases assume "finite I" interpret I: finite_product_prob_space M I by default fact show ?thesis proof (intro exI[of _ "measure (Pi\<^isub>M I M)"] ballI conjI) fix A assume "A \<in> sets generator" from generatorE[OF this] guess J X . note J = this from J(1-4) `finite I` show "measure I.P A = \<mu>G A" unfolding J(6) by (subst J(5)[symmetric]) (simp add: measure_emb) next have [simp]: "space generator = space (Pi\<^isub>M I M)" by (simp add: generator_def product_algebra_def) have "\<lparr>space = space generator, sets = sets (sigma generator), measure = measure I.P\<rparr> = I.P" (is "?P = _") by (auto intro!: measure_space.equality simp: finite_index_eq_finite_product[OF `finite I`]) show "prob_space ?P" proof show "measure_space ?P" using `?P = I.P` by simp default show "measure ?P (space ?P) = 1" using I.measure_space_1 by simp qed qed next let ?G = generator assume "\<not> finite I" then have I_not_empty: "I \<noteq> {}" by auto interpret G!: algebra generator by (rule algebra_generator) fact note \<mu>G_mono = G.additive_increasing[OF positive_\<mu>G[OF I_not_empty] additive_\<mu>G[OF I_not_empty], THEN increasingD] { fix Z J assume J: "J \<noteq> {}" "finite J" "J \<subseteq> I" and Z: "Z \<in> sets ?G" from `infinite I` `finite J` obtain k where k: "k \<in> I" "k \<notin> J" by (metis rev_finite_subset subsetI) moreover from Z guess K' X' by (rule generatorE) moreover def K \<equiv> "insert k K'" moreover def X \<equiv> "emb K K' X'" ultimately have K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "X \<in> sets (Pi\<^isub>M K M)" "Z = emb I K X" "K - J \<noteq> {}" "K - J \<subseteq> I" "\<mu>G Z = measure (Pi\<^isub>M K M) X" by (auto simp: subset_insertI) let "?M y" = "merge J y (K - J) -` emb (J \<union> K) K X \<inter> space (Pi\<^isub>M (K - J) M)" { fix y assume y: "y \<in> space (Pi\<^isub>M J M)" note * = merge_emb[OF `K \<subseteq> I` `J \<subseteq> I` y, of X] moreover have **: "?M y \<in> sets (Pi\<^isub>M (K - J) M)" using J K y by (intro merge_sets) auto ultimately have ***: "(merge J y (I - J) -` Z \<inter> space (Pi\<^isub>M I M)) \<in> sets ?G" using J K by (intro generatorI) auto have "\<mu>G (merge J y (I - J) -` emb I K X \<inter> space (Pi\<^isub>M I M)) = measure (Pi\<^isub>M (K - J) M) (?M y)" unfolding * using K J by (subst \<mu>G_eq[OF _ _ _ **]) auto note * ** *** this } note merge_in_G = this have "finite (K - J)" using K by auto interpret J: finite_product_prob_space M J by default fact+ interpret KmJ: finite_product_prob_space M "K - J" by default fact+ have "\<mu>G Z = measure (Pi\<^isub>M (J \<union> (K - J)) M) (emb (J \<union> (K - J)) K X)" using K J by simp also have "\<dots> = (\<integral>\<^isup>+ x. measure (Pi\<^isub>M (K - J) M) (?M x) \<partial>Pi\<^isub>M J M)" using K J by (subst measure_fold_integral) auto also have "\<dots> = (\<integral>\<^isup>+ y. \<mu>G (merge J y (I - J) -` Z \<inter> space (Pi\<^isub>M I M)) \<partial>Pi\<^isub>M J M)" (is "_ = (\<integral>\<^isup>+x. \<mu>G (?MZ x) \<partial>Pi\<^isub>M J M)") proof (intro J.positive_integral_cong) fix x assume x: "x \<in> space (Pi\<^isub>M J M)" with K merge_in_G(2)[OF this] show "measure (Pi\<^isub>M (K - J) M) (?M x) = \<mu>G (?MZ x)" unfolding `Z = emb I K X` merge_in_G(1)[OF x] by (subst \<mu>G_eq) auto qed finally have fold: "\<mu>G Z = (\<integral>\<^isup>+x. \<mu>G (?MZ x) \<partial>Pi\<^isub>M J M)" . { fix x assume x: "x \<in> space (Pi\<^isub>M J M)" then have "\<mu>G (?MZ x) \<le> 1" unfolding merge_in_G(4)[OF x] `Z = emb I K X` by (intro KmJ.measure_le_1 merge_in_G(2)[OF x]) } note le_1 = this let "?q y" = "\<mu>G (merge J y (I - J) -` Z \<inter> space (Pi\<^isub>M I M))" have "?q \<in> borel_measurable (Pi\<^isub>M J M)" unfolding `Z = emb I K X` using J K merge_in_G(3) by (simp add: merge_in_G \<mu>G_eq measure_fold_measurable del: space_product_algebra cong: measurable_cong) note this fold le_1 merge_in_G(3) } note fold = this have "\<exists>\<mu>. (\<forall>s\<in>sets ?G. \<mu> s = \<mu>G s) \<and> measure_space \<lparr>space = space ?G, sets = sets (sigma ?G), measure = \<mu>\<rparr>" (is "\<exists>\<mu>. _ \<and> measure_space (?ms \<mu>)") proof (rule G.caratheodory_empty_continuous[OF positive_\<mu>G additive_\<mu>G]) fix A assume "A \<in> sets ?G" with generatorE guess J X . note JX = this interpret JK: finite_product_prob_space M J by default fact+ with JX show "\<mu>G A \<noteq> \<infinity>" by simp next fix A assume A: "range A \<subseteq> sets ?G" "decseq A" "(\<Inter>i. A i) = {}" then have "decseq (\<lambda>i. \<mu>G (A i))" by (auto intro!: \<mu>G_mono simp: decseq_def) moreover have "(INF i. \<mu>G (A i)) = 0" proof (rule ccontr) assume "(INF i. \<mu>G (A i)) \<noteq> 0" (is "?a \<noteq> 0") moreover have "0 \<le> ?a" using A positive_\<mu>G[OF I_not_empty] by (auto intro!: INF_greatest simp: positive_def) ultimately have "0 < ?a" by auto have "\<forall>n. \<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A n = emb I J X \<and> \<mu>G (A n) = measure (Pi\<^isub>M J M) X" using A by (intro allI generator_Ex) auto then obtain J' X' where J': "\<And>n. J' n \<noteq> {}" "\<And>n. finite (J' n)" "\<And>n. J' n \<subseteq> I" "\<And>n. X' n \<in> sets (Pi\<^isub>M (J' n) M)" and A': "\<And>n. A n = emb I (J' n) (X' n)" unfolding choice_iff by blast moreover def J \<equiv> "\<lambda>n. (\<Union>i\<le>n. J' i)" moreover def X \<equiv> "\<lambda>n. emb (J n) (J' n) (X' n)" ultimately have J: "\<And>n. J n \<noteq> {}" "\<And>n. finite (J n)" "\<And>n. J n \<subseteq> I" "\<And>n. X n \<in> sets (Pi\<^isub>M (J n) M)" by auto with A' have A_eq: "\<And>n. A n = emb I (J n) (X n)" "\<And>n. A n \<in> sets ?G" unfolding J_def X_def by (subst emb_trans) (insert A, auto) have J_mono: "\<And>n m. n \<le> m \<Longrightarrow> J n \<subseteq> J m" unfolding J_def by force interpret J: finite_product_prob_space M "J i" for i by default fact+ have a_le_1: "?a \<le> 1" using \<mu>G_spec[of "J 0" "A 0" "X 0"] J A_eq by (auto intro!: INF_lower2[of 0] J.measure_le_1) let "?M K Z y" = "merge K y (I - K) -` Z \<inter> space (Pi\<^isub>M I M)" { fix Z k assume Z: "range Z \<subseteq> sets ?G" "decseq Z" "\<forall>n. ?a / 2^k \<le> \<mu>G (Z n)" then have Z_sets: "\<And>n. Z n \<in> sets ?G" by auto fix J' assume J': "J' \<noteq> {}" "finite J'" "J' \<subseteq> I" interpret J': finite_product_prob_space M J' by default fact+ let "?q n y" = "\<mu>G (?M J' (Z n) y)" let "?Q n" = "?q n -` {?a / 2^(k+1) ..} \<inter> space (Pi\<^isub>M J' M)" { fix n have "?q n \<in> borel_measurable (Pi\<^isub>M J' M)" using Z J' by (intro fold(1)) auto then have "?Q n \<in> sets (Pi\<^isub>M J' M)" by (rule measurable_sets) auto } note Q_sets = this have "?a / 2^(k+1) \<le> (INF n. measure (Pi\<^isub>M J' M) (?Q n))" proof (intro INF_greatest) fix n have "?a / 2^k \<le> \<mu>G (Z n)" using Z by auto also have "\<dots> \<le> (\<integral>\<^isup>+ x. indicator (?Q n) x + ?a / 2^(k+1) \<partial>Pi\<^isub>M J' M)" unfolding fold(2)[OF J' `Z n \<in> sets ?G`] proof (intro J'.positive_integral_mono) fix x assume x: "x \<in> space (Pi\<^isub>M J' M)" then have "?q n x \<le> 1 + 0" using J' Z fold(3) Z_sets by auto also have "\<dots> \<le> 1 + ?a / 2^(k+1)" using `0 < ?a` by (intro add_mono) auto finally have "?q n x \<le> 1 + ?a / 2^(k+1)" . with x show "?q n x \<le> indicator (?Q n) x + ?a / 2^(k+1)" by (auto split: split_indicator simp del: power_Suc) qed also have "\<dots> = measure (Pi\<^isub>M J' M) (?Q n) + ?a / 2^(k+1)" using `0 \<le> ?a` Q_sets J'.measure_space_1 by (subst J'.positive_integral_add) auto finally show "?a / 2^(k+1) \<le> measure (Pi\<^isub>M J' M) (?Q n)" using `?a \<le> 1` by (cases rule: ereal2_cases[of ?a "measure (Pi\<^isub>M J' M) (?Q n)"]) (auto simp: field_simps) qed also have "\<dots> = measure (Pi\<^isub>M J' M) (\<Inter>n. ?Q n)" proof (intro J'.continuity_from_above) show "range ?Q \<subseteq> sets (Pi\<^isub>M J' M)" using Q_sets by auto show "decseq ?Q" unfolding decseq_def proof (safe intro!: vimageI[OF refl]) fix m n :: nat assume "m \<le> n" fix x assume x: "x \<in> space (Pi\<^isub>M J' M)" assume "?a / 2^(k+1) \<le> ?q n x" also have "?q n x \<le> ?q m x" proof (rule \<mu>G_mono) from fold(4)[OF J', OF Z_sets x] show "?M J' (Z n) x \<in> sets ?G" "?M J' (Z m) x \<in> sets ?G" by auto show "?M J' (Z n) x \<subseteq> ?M J' (Z m) x" using `decseq Z`[THEN decseqD, OF `m \<le> n`] by auto qed finally show "?a / 2^(k+1) \<le> ?q m x" . qed qed (intro J'.finite_measure Q_sets) finally have "(\<Inter>n. ?Q n) \<noteq> {}" using `0 < ?a` `?a \<le> 1` by (cases ?a) (auto simp: divide_le_0_iff power_le_zero_eq) then have "\<exists>w\<in>space (Pi\<^isub>M J' M). \<forall>n. ?a / 2 ^ (k + 1) \<le> ?q n w" by auto } note Ex_w = this let "?q k n y" = "\<mu>G (?M (J k) (A n) y)" have "\<forall>n. ?a / 2 ^ 0 \<le> \<mu>G (A n)" by (auto intro: INF_lower) from Ex_w[OF A(1,2) this J(1-3), of 0] guess w0 .. note w0 = this let "?P k wk w" = "w \<in> space (Pi\<^isub>M (J (Suc k)) M) \<and> restrict w (J k) = wk \<and> (\<forall>n. ?a / 2 ^ (Suc k + 1) \<le> ?q (Suc k) n w)" def w \<equiv> "nat_rec w0 (\<lambda>k wk. Eps (?P k wk))" { fix k have w: "w k \<in> space (Pi\<^isub>M (J k) M) \<and> (\<forall>n. ?a / 2 ^ (k + 1) \<le> ?q k n (w k)) \<and> (k \<noteq> 0 \<longrightarrow> restrict (w k) (J (k - 1)) = w (k - 1))" proof (induct k) case 0 with w0 show ?case unfolding w_def nat_rec_0 by auto next case (Suc k) then have wk: "w k \<in> space (Pi\<^isub>M (J k) M)" by auto have "\<exists>w'. ?P k (w k) w'" proof cases assume [simp]: "J k = J (Suc k)" show ?thesis proof (intro exI[of _ "w k"] conjI allI) fix n have "?a / 2 ^ (Suc k + 1) \<le> ?a / 2 ^ (k + 1)" using `0 < ?a` `?a \<le> 1` by (cases ?a) (auto simp: field_simps) also have "\<dots> \<le> ?q k n (w k)" using Suc by auto finally show "?a / 2 ^ (Suc k + 1) \<le> ?q (Suc k) n (w k)" by simp next show "w k \<in> space (Pi\<^isub>M (J (Suc k)) M)" using Suc by simp then show "restrict (w k) (J k) = w k" by (simp add: extensional_restrict) qed next assume "J k \<noteq> J (Suc k)" with J_mono[of k "Suc k"] have "J (Suc k) - J k \<noteq> {}" (is "?D \<noteq> {}") by auto have "range (\<lambda>n. ?M (J k) (A n) (w k)) \<subseteq> sets ?G" "decseq (\<lambda>n. ?M (J k) (A n) (w k))" "\<forall>n. ?a / 2 ^ (k + 1) \<le> \<mu>G (?M (J k) (A n) (w k))" using `decseq A` fold(4)[OF J(1-3) A_eq(2), of "w k" k] Suc by (auto simp: decseq_def) from Ex_w[OF this `?D \<noteq> {}`] J[of "Suc k"] obtain w' where w': "w' \<in> space (Pi\<^isub>M ?D M)" "\<forall>n. ?a / 2 ^ (Suc k + 1) \<le> \<mu>G (?M ?D (?M (J k) (A n) (w k)) w')" by auto let ?w = "merge (J k) (w k) ?D w'" have [simp]: "\<And>x. merge (J k) (w k) (I - J k) (merge ?D w' (I - ?D) x) = merge (J (Suc k)) ?w (I - (J (Suc k))) x" using J(3)[of "Suc k"] J(3)[of k] J_mono[of k "Suc k"] by (auto intro!: ext split: split_merge) have *: "\<And>n. ?M ?D (?M (J k) (A n) (w k)) w' = ?M (J (Suc k)) (A n) ?w" using w'(1) J(3)[of "Suc k"] by (auto split: split_merge intro!: extensional_merge_sub) force+ show ?thesis apply (rule exI[of _ ?w]) using w' J_mono[of k "Suc k"] wk unfolding * apply (auto split: split_merge intro!: extensional_merge_sub ext) apply (force simp: extensional_def) done qed then have "?P k (w k) (w (Suc k))" unfolding w_def nat_rec_Suc unfolding w_def[symmetric] by (rule someI_ex) then show ?case by auto qed moreover then have "w k \<in> space (Pi\<^isub>M (J k) M)" by auto moreover from w have "?a / 2 ^ (k + 1) \<le> ?q k k (w k)" by auto then have "?M (J k) (A k) (w k) \<noteq> {}" using positive_\<mu>G[OF I_not_empty, unfolded positive_def] `0 < ?a` `?a \<le> 1` by (cases ?a) (auto simp: divide_le_0_iff power_le_zero_eq) then obtain x where "x \<in> ?M (J k) (A k) (w k)" by auto then have "merge (J k) (w k) (I - J k) x \<in> A k" by auto then have "\<exists>x\<in>A k. restrict x (J k) = w k" using `w k \<in> space (Pi\<^isub>M (J k) M)` by (intro rev_bexI) (auto intro!: ext simp: extensional_def) ultimately have "w k \<in> space (Pi\<^isub>M (J k) M)" "\<exists>x\<in>A k. restrict x (J k) = w k" "k \<noteq> 0 \<Longrightarrow> restrict (w k) (J (k - 1)) = w (k - 1)" by auto } note w = this { fix k l i assume "k \<le> l" "i \<in> J k" { fix l have "w k i = w (k + l) i" proof (induct l) case (Suc l) from `i \<in> J k` J_mono[of k "k + l"] have "i \<in> J (k + l)" by auto with w(3)[of "k + Suc l"] have "w (k + l) i = w (k + Suc l) i" by (auto simp: restrict_def fun_eq_iff split: split_if_asm) with Suc show ?case by simp qed simp } from this[of "l - k"] `k \<le> l` have "w l i = w k i" by simp } note w_mono = this def w' \<equiv> "\<lambda>i. if i \<in> (\<Union>k. J k) then w (LEAST k. i \<in> J k) i else if i \<in> I then (SOME x. x \<in> space (M i)) else undefined" { fix i k assume k: "i \<in> J k" have "w k i = w (LEAST k. i \<in> J k) i" by (intro w_mono Least_le k LeastI[of _ k]) then have "w' i = w k i" unfolding w'_def using k by auto } note w'_eq = this have w'_simps1: "\<And>i. i \<notin> I \<Longrightarrow> w' i = undefined" using J by (auto simp: w'_def) have w'_simps2: "\<And>i. i \<notin> (\<Union>k. J k) \<Longrightarrow> i \<in> I \<Longrightarrow> w' i \<in> space (M i)" using J by (auto simp: w'_def intro!: someI_ex[OF M.not_empty[unfolded ex_in_conv[symmetric]]]) { fix i assume "i \<in> I" then have "w' i \<in> space (M i)" using w(1) by (cases "i \<in> (\<Union>k. J k)") (force simp: w'_simps2 w'_eq)+ } note w'_simps[simp] = w'_eq w'_simps1 w'_simps2 this have w': "w' \<in> space (Pi\<^isub>M I M)" using w(1) by (auto simp add: Pi_iff extensional_def) { fix n have "restrict w' (J n) = w n" using w(1) by (auto simp add: fun_eq_iff restrict_def Pi_iff extensional_def) with w[of n] obtain x where "x \<in> A n" "restrict x (J n) = restrict w' (J n)" by auto then have "w' \<in> A n" unfolding A_eq using w' by (auto simp: emb_def) } then have "w' \<in> (\<Inter>i. A i)" by auto with `(\<Inter>i. A i) = {}` show False by auto qed ultimately show "(\<lambda>i. \<mu>G (A i)) ----> 0" using LIMSEQ_ereal_INFI[of "\<lambda>i. \<mu>G (A i)"] by simp qed fact+ then guess \<mu> .. note \<mu> = this show ?thesis proof (intro exI[of _ \<mu>] conjI) show "\<forall>S\<in>sets ?G. \<mu> S = \<mu>G S" using \<mu> by simp show "prob_space (?ms \<mu>)" proof show "measure_space (?ms \<mu>)" using \<mu> by simp obtain i where "i \<in> I" using I_not_empty by auto interpret i: finite_product_sigma_finite M "{i}" by default auto let ?X = "\<Pi>\<^isub>E i\<in>{i}. space (M i)" have X: "?X \<in> sets (Pi\<^isub>M {i} M)" by auto with `i \<in> I` have "emb I {i} ?X \<in> sets generator" by (intro generatorI') auto with \<mu> have "\<mu> (emb I {i} ?X) = \<mu>G (emb I {i} ?X)" by auto with \<mu>G_eq[OF _ _ _ X] `i \<in> I` have "\<mu> (emb I {i} ?X) = measure (M i) (space (M i))" by (simp add: i.measure_times) also have "emb I {i} ?X = space (Pi\<^isub>P I M)" using `i \<in> I` by (auto simp: emb_def infprod_algebra_def generator_def) finally show "measure (?ms \<mu>) (space (?ms \<mu>)) = 1" using M.measure_space_1 by (simp add: infprod_algebra_def) qed qed qed lemma (in product_prob_space) infprod_spec: "(\<forall>s\<in>sets generator. measure (Pi\<^isub>P I M) s = \<mu>G s) \<and> prob_space (Pi\<^isub>P I M)" (is "?Q infprod_algebra") unfolding infprod_algebra_def by (rule someI2_ex[OF extend_\<mu>G]) (auto simp: sigma_def generator_def) sublocale product_prob_space \<subseteq> P: prob_space "Pi\<^isub>P I M" using infprod_spec by simp lemma (in product_prob_space) measure_infprod_emb: assumes "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" shows "\<mu> (emb I J X) = measure (Pi\<^isub>M J M) X" proof - have "emb I J X \<in> sets generator" using assms by (rule generatorI') with \<mu>G_eq[OF assms] infprod_spec show ?thesis by auto qed lemma (in product_prob_space) measurable_component: assumes "i \<in> I" shows "(\<lambda>x. x i) \<in> measurable (Pi\<^isub>P I M) (M i)" proof (unfold measurable_def, safe) fix x assume "x \<in> space (Pi\<^isub>P I M)" then show "x i \<in> space (M i)" using `i \<in> I` by (auto simp: infprod_algebra_def generator_def) next fix A assume "A \<in> sets (M i)" with `i \<in> I` have "(\<Pi>\<^isub>E x \<in> {i}. A) \<in> sets (Pi\<^isub>M {i} M)" "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) = emb I {i} (\<Pi>\<^isub>E x \<in> {i}. A)" by (auto simp: infprod_algebra_def generator_def emb_def) from generatorI[OF _ _ _ this] `i \<in> I` show "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) \<in> sets (Pi\<^isub>P I M)" unfolding infprod_algebra_def by auto qed lemma (in product_prob_space) emb_in_infprod_algebra[intro]: fixes J assumes J: "finite J" "J \<subseteq> I" and X: "X \<in> sets (Pi\<^isub>M J M)" shows "emb I J X \<in> sets (\<Pi>\<^isub>P i\<in>I. M i)" proof cases assume "J = {}" with X have "emb I J X = space (\<Pi>\<^isub>P i\<in>I. M i) \<or> emb I J X = {}" by (auto simp: emb_def infprod_algebra_def generator_def product_algebra_def product_algebra_generator_def image_constant sigma_def) then show ?thesis by auto next assume "J \<noteq> {}" show ?thesis unfolding infprod_algebra_def by simp (intro in_sigma generatorI' `J \<noteq> {}` J X) qed lemma (in product_prob_space) finite_measure_infprod_emb: assumes "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" shows "\<mu>' (emb I J X) = finite_measure.\<mu>' (Pi\<^isub>M J M) X" proof - interpret J: finite_product_prob_space M J by default fact+ from assms have "emb I J X \<in> sets (Pi\<^isub>P I M)" by auto with assms show "\<mu>' (emb I J X) = J.\<mu>' X" unfolding \<mu>'_def J.\<mu>'_def unfolding measure_infprod_emb[OF assms] by auto qed lemma (in finite_product_prob_space) finite_measure_times: assumes "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)" shows "\<mu>' (Pi\<^isub>E I A) = (\<Prod>i\<in>I. M.\<mu>' i (A i))" using assms unfolding \<mu>'_def M.\<mu>'_def by (subst measure_times[OF assms]) (auto simp: finite_measure_eq M.finite_measure_eq setprod_ereal) lemma (in product_prob_space) finite_measure_infprod_emb_Pi: assumes J: "finite J" "J \<subseteq> I" "\<And>j. j \<in> J \<Longrightarrow> X j \<in> sets (M j)" shows "\<mu>' (emb I J (Pi\<^isub>E J X)) = (\<Prod>j\<in>J. M.\<mu>' j (X j))" proof cases assume "J = {}" then have "emb I J (Pi\<^isub>E J X) = space infprod_algebra" by (auto simp: infprod_algebra_def generator_def sigma_def emb_def) then show ?thesis using `J = {}` P.prob_space by simp next assume "J \<noteq> {}" interpret J: finite_product_prob_space M J by default fact+ have "(\<Prod>i\<in>J. M.\<mu>' i (X i)) = J.\<mu>' (Pi\<^isub>E J X)" using J `J \<noteq> {}` by (subst J.finite_measure_times) auto also have "\<dots> = \<mu>' (emb I J (Pi\<^isub>E J X))" using J `J \<noteq> {}` by (intro finite_measure_infprod_emb[symmetric]) auto finally show ?thesis by simp qed lemma sigma_sets_mono: assumes "A \<subseteq> sigma_sets X B" shows "sigma_sets X A \<subseteq> sigma_sets X B" proof fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B" by induct (insert `A \<subseteq> sigma_sets X B`, auto intro: sigma_sets.intros) qed lemma sigma_sets_mono': assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B" proof fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B" by induct (insert `A \<subseteq> B`, auto intro: sigma_sets.intros) qed lemma sigma_sets_superset_generator: "A \<subseteq> sigma_sets X A" by (auto intro: sigma_sets.Basic) lemma (in product_prob_space) infprod_algebra_alt: "Pi\<^isub>P I M = sigma \<lparr> space = space (Pi\<^isub>P I M), sets = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i))), measure = measure (Pi\<^isub>P I M) \<rparr>" (is "_ = sigma \<lparr> space = ?O, sets = ?M, measure = ?m \<rparr>") proof (rule measure_space.equality) let ?G = "\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M)" have "sigma_sets ?O ?M = sigma_sets ?O ?G" proof (intro equalityI sigma_sets_mono UN_least) fix J assume J: "J \<in> {J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}" have "emb I J ` Pi\<^isub>E J ` (\<Pi> i\<in>J. sets (M i)) \<subseteq> emb I J ` sets (Pi\<^isub>M J M)" by auto also have "\<dots> \<subseteq> ?G" using J by (rule UN_upper) also have "\<dots> \<subseteq> sigma_sets ?O ?G" by (rule sigma_sets_superset_generator) finally show "emb I J ` Pi\<^isub>E J ` (\<Pi> i\<in>J. sets (M i)) \<subseteq> sigma_sets ?O ?G" . have "emb I J ` sets (Pi\<^isub>M J M) = emb I J ` sigma_sets (space (Pi\<^isub>M J M)) (Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i)))" by (simp add: sets_sigma product_algebra_generator_def product_algebra_def) also have "\<dots> = sigma_sets (space (Pi\<^isub>M I M)) (emb I J ` Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i)))" using J M.sets_into_space by (auto simp: emb_def_raw intro!: sigma_sets_vimage[symmetric]) blast also have "\<dots> \<subseteq> sigma_sets (space (Pi\<^isub>M I M)) ?M" using J by (intro sigma_sets_mono') auto finally show "emb I J ` sets (Pi\<^isub>M J M) \<subseteq> sigma_sets ?O ?M" by (simp add: infprod_algebra_def generator_def) qed then show "sets (Pi\<^isub>P I M) = sets (sigma \<lparr> space = ?O, sets = ?M, measure = ?m \<rparr>)" by (simp_all add: infprod_algebra_def generator_def sets_sigma) qed simp_all lemma (in product_prob_space) infprod_algebra_alt2: "Pi\<^isub>P I M = sigma \<lparr> space = space (Pi\<^isub>P I M), sets = (\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (M i)), measure = measure (Pi\<^isub>P I M) \<rparr>" (is "_ = ?S") proof (rule measure_space.equality) let "sigma \<lparr> space = ?O, sets = ?A, \<dots> = _ \<rparr>" = ?S let ?G = "(\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i)))" have "sets (Pi\<^isub>P I M) = sigma_sets ?O ?G" by (subst infprod_algebra_alt) (simp add: sets_sigma) also have "\<dots> = sigma_sets ?O ?A" proof (intro equalityI sigma_sets_mono subsetI) interpret A: sigma_algebra ?S by (rule sigma_algebra_sigma) auto fix A assume "A \<in> ?G" then obtain J B where "finite J" "J \<noteq> {}" "J \<subseteq> I" "A = emb I J (Pi\<^isub>E J B)" and B: "\<And>i. i \<in> J \<Longrightarrow> B i \<in> sets (M i)" by auto then have A: "A = (\<Inter>j\<in>J. (\<lambda>x. x j) -` (B j) \<inter> space (Pi\<^isub>P I M))" by (auto simp: emb_def infprod_algebra_def generator_def Pi_iff) { fix j assume "j\<in>J" with `J \<subseteq> I` have "j \<in> I" by auto with `j \<in> J` B have "(\<lambda>x. x j) -` (B j) \<inter> space (Pi\<^isub>P I M) \<in> sets ?S" by (auto simp: sets_sigma intro: sigma_sets.Basic) } with `finite J` `J \<noteq> {}` have "A \<in> sets ?S" unfolding A by (intro A.finite_INT) auto then show "A \<in> sigma_sets ?O ?A" by (simp add: sets_sigma) next fix A assume "A \<in> ?A" then obtain i B where i: "i \<in> I" "B \<in> sets (M i)" and "A = (\<lambda>x. x i) -` B \<inter> space (Pi\<^isub>P I M)" by auto then have "A = emb I {i} (Pi\<^isub>E {i} (\<lambda>_. B))" by (auto simp: emb_def infprod_algebra_def generator_def Pi_iff) with i show "A \<in> sigma_sets ?O ?G" by (intro sigma_sets.Basic UN_I[where a="{i}"]) auto qed also have "\<dots> = sets ?S" by (simp add: sets_sigma) finally show "sets (Pi\<^isub>P I M) = sets ?S" . qed simp_all lemma (in product_prob_space) measurable_into_infprod_algebra: assumes "sigma_algebra N" assumes f: "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. f x i) \<in> measurable N (M i)" assumes ext: "\<And>x. x \<in> space N \<Longrightarrow> f x \<in> extensional I" shows "f \<in> measurable N (Pi\<^isub>P I M)" proof - interpret N: sigma_algebra N by fact have f_in: "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. f x i) \<in> space N \<rightarrow> space (M i)" using f by (auto simp: measurable_def) { fix i A assume i: "i \<in> I" "A \<in> sets (M i)" then have "f -` (\<lambda>x. x i) -` A \<inter> f -` space infprod_algebra \<inter> space N = (\<lambda>x. f x i) -` A \<inter> space N" using f_in ext by (auto simp: infprod_algebra_def generator_def) also have "\<dots> \<in> sets N" by (rule measurable_sets f i)+ finally have "f -` (\<lambda>x. x i) -` A \<inter> f -` space infprod_algebra \<inter> space N \<in> sets N" . } with f_in ext show ?thesis by (subst infprod_algebra_alt2) (auto intro!: N.measurable_sigma simp: Pi_iff infprod_algebra_def generator_def) qed lemma (in product_prob_space) measurable_singleton_infprod: assumes "i \<in> I" shows "(\<lambda>x. x i) \<in> measurable (Pi\<^isub>P I M) (M i)" proof (unfold measurable_def, intro CollectI conjI ballI) show "(\<lambda>x. x i) \<in> space (Pi\<^isub>P I M) \<rightarrow> space (M i)" using M.sets_into_space `i \<in> I` by (auto simp: infprod_algebra_def generator_def) fix A assume "A \<in> sets (M i)" have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) = emb I {i} (\<Pi>\<^isub>E _\<in>{i}. A)" by (auto simp: infprod_algebra_def generator_def emb_def) also have "\<dots> \<in> sets (Pi\<^isub>P I M)" using `i \<in> I` `A \<in> sets (M i)` by (intro emb_in_infprod_algebra product_algebraI) auto finally show "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) \<in> sets (Pi\<^isub>P I M)" . qed lemma (in product_prob_space) sigma_product_algebra_sigma_eq: assumes M: "\<And>i. i \<in> I \<Longrightarrow> M i = sigma (E i)" shows "sets (Pi\<^isub>P I M) = sigma_sets (space (Pi\<^isub>P I M)) (\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (E i))" proof - let ?E = "(\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (E i))" let ?M = "(\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (M i))" { fix i A assume "i\<in>I" "A \<in> sets (E i)" then have "A \<in> sets (M i)" using M by auto then have "A \<in> Pow (space (M i))" using M.sets_into_space by auto then have "A \<in> Pow (space (E i))" using M[OF `i \<in> I`] by auto } moreover have "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. x i) \<in> space infprod_algebra \<rightarrow> space (E i)" by (auto simp: M infprod_algebra_def generator_def Pi_iff) ultimately have "sigma_sets (space (Pi\<^isub>P I M)) ?M \<subseteq> sigma_sets (space (Pi\<^isub>P I M)) ?E" apply (intro sigma_sets_mono UN_least) apply (simp add: sets_sigma M) apply (subst sigma_sets_vimage[symmetric]) apply (auto intro!: sigma_sets_mono') done moreover have "sigma_sets (space (Pi\<^isub>P I M)) ?E \<subseteq> sigma_sets (space (Pi\<^isub>P I M)) ?M" by (intro sigma_sets_mono') (auto simp: M) ultimately show ?thesis by (subst infprod_algebra_alt2) (auto simp: sets_sigma) qed lemma (in product_prob_space) Int_proj_eq_emb: assumes "J \<noteq> {}" "J \<subseteq> I" shows "(\<Inter>i\<in>J. (\<lambda>x. x i) -` A i \<inter> space (Pi\<^isub>P I M)) = emb I J (Pi\<^isub>E J A)" using assms by (auto simp: infprod_algebra_def generator_def emb_def Pi_iff) lemma (in product_prob_space) emb_insert: "i \<notin> J \<Longrightarrow> emb I J (Pi\<^isub>E J f) \<inter> ((\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) = emb I (insert i J) (Pi\<^isub>E (insert i J) (f(i := A)))" by (auto simp: emb_def Pi_iff infprod_algebra_def generator_def split: split_if_asm) subsection {* Sequence space *} locale sequence_space = product_prob_space M "UNIV :: nat set" for M lemma (in sequence_space) infprod_in_sets[intro]: fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets (M i)" shows "Pi UNIV E \<in> sets (Pi\<^isub>P UNIV M)" proof - have "Pi UNIV E = (\<Inter>i. emb UNIV {..i} (\<Pi>\<^isub>E j\<in>{..i}. E j))" using E E[THEN M.sets_into_space] by (auto simp: emb_def Pi_iff extensional_def) blast with E show ?thesis by (auto intro: emb_in_infprod_algebra) qed lemma (in sequence_space) measure_infprod: fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets (M i)" shows "(\<lambda>n. \<Prod>i\<le>n. M.\<mu>' i (E i)) ----> \<mu>' (Pi UNIV E)" proof - let "?E n" = "emb UNIV {..n} (Pi\<^isub>E {.. n} E)" { fix n :: nat interpret n: finite_product_prob_space M "{..n}" by default auto have "(\<Prod>i\<le>n. M.\<mu>' i (E i)) = n.\<mu>' (Pi\<^isub>E {.. n} E)" using E by (subst n.finite_measure_times) auto also have "\<dots> = \<mu>' (?E n)" using E by (intro finite_measure_infprod_emb[symmetric]) auto finally have "(\<Prod>i\<le>n. M.\<mu>' i (E i)) = \<mu>' (?E n)" . } moreover have "Pi UNIV E = (\<Inter>n. ?E n)" using E E[THEN M.sets_into_space] by (auto simp: emb_def extensional_def Pi_iff) blast moreover have "range ?E \<subseteq> sets (Pi\<^isub>P UNIV M)" using E by auto moreover have "decseq ?E" by (auto simp: emb_def Pi_iff decseq_def) ultimately show ?thesis by (simp add: finite_continuity_from_above) qed end