| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46671 | 3a40ea076230 |
| child 46731 | 5302e932d1e5 |
| permissions | -rw-r--r-- |
(* Title: HOL/Probability/Lebesgue_Integration.thy Author: Johannes Hölzl, TU München Author: Armin Heller, TU München *) header {*Lebesgue Integration*} theory Lebesgue_Integration imports Measure Borel_Space begin lemma real_ereal_1[simp]: "real (1::ereal) = 1" unfolding one_ereal_def by simp lemma ereal_indicator_pos[simp,intro]: "0 \<le> (indicator A x ::ereal)" unfolding indicator_def by auto lemma tendsto_real_max: fixes x y :: real assumes "(X ---> x) net" assumes "(Y ---> y) net" shows "((\<lambda>x. max (X x) (Y x)) ---> max x y) net" proof - have *: "\<And>x y :: real. max x y = y + ((x - y) + norm (x - y)) / 2" by (auto split: split_max simp: field_simps) show ?thesis unfolding * by (intro tendsto_add assms tendsto_divide tendsto_norm tendsto_diff) auto qed lemma (in measure_space) measure_Union: assumes "finite S" "S \<subseteq> sets M" "\<And>A B. A \<in> S \<Longrightarrow> B \<in> S \<Longrightarrow> A \<noteq> B \<Longrightarrow> A \<inter> B = {}" shows "setsum \<mu> S = \<mu> (\<Union>S)" proof - have "setsum \<mu> S = \<mu> (\<Union>i\<in>S. i)" using assms by (intro measure_setsum[OF `finite S`]) (auto simp: disjoint_family_on_def) also have "\<dots> = \<mu> (\<Union>S)" by (auto intro!: arg_cong[where f=\<mu>]) finally show ?thesis . qed lemma (in sigma_algebra) measurable_sets2[intro]: assumes "f \<in> measurable M M'" "g \<in> measurable M M''" and "A \<in> sets M'" "B \<in> sets M''" shows "f -` A \<inter> g -` B \<inter> space M \<in> sets M" proof - have "f -` A \<inter> g -` B \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)" by auto then show ?thesis using assms by (auto intro: measurable_sets) qed lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" proof assume "\<forall>n. f n \<le> f (Suc n)" then show "incseq f" by (auto intro!: incseq_SucI) qed (auto simp: incseq_def) lemma borel_measurable_real_floor: "(\<lambda>x::real. real \<lfloor>x\<rfloor>) \<in> borel_measurable borel" unfolding borel.borel_measurable_iff_ge proof (intro allI) fix a :: real { fix x have "a \<le> real \<lfloor>x\<rfloor> \<longleftrightarrow> real \<lceil>a\<rceil> \<le> x" using le_floor_eq[of "\<lceil>a\<rceil>" x] ceiling_le_iff[of a "\<lfloor>x\<rfloor>"] unfolding real_eq_of_int by simp } then have "{w::real \<in> space borel. a \<le> real \<lfloor>w\<rfloor>} = {real \<lceil>a\<rceil>..}" by auto then show "{w::real \<in> space borel. a \<le> real \<lfloor>w\<rfloor>} \<in> sets borel" by auto qed lemma measure_preservingD2: "f \<in> measure_preserving A B \<Longrightarrow> f \<in> measurable A B" unfolding measure_preserving_def by auto lemma measure_preservingD3: "f \<in> measure_preserving A B \<Longrightarrow> f \<in> space A \<rightarrow> space B" unfolding measure_preserving_def measurable_def by auto lemma measure_preservingD: "T \<in> measure_preserving A B \<Longrightarrow> X \<in> sets B \<Longrightarrow> measure A (T -` X \<inter> space A) = measure B X" unfolding measure_preserving_def by auto lemma (in sigma_algebra) borel_measurable_real_natfloor[intro, simp]: assumes "f \<in> borel_measurable M" shows "(\<lambda>x. real (natfloor (f x))) \<in> borel_measurable M" proof - have "\<And>x. real (natfloor (f x)) = max 0 (real \<lfloor>f x\<rfloor>)" by (auto simp: max_def natfloor_def) with borel_measurable_max[OF measurable_comp[OF assms borel_measurable_real_floor] borel_measurable_const] show ?thesis by (simp add: comp_def) qed lemma (in measure_space) AE_not_in: assumes N: "N \<in> null_sets" shows "AE x. x \<notin> N" using N by (rule AE_I') auto lemma sums_If_finite: fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" assumes finite: "finite {r. P r}" shows "(\<lambda>r. if P r then f r else 0) sums (\<Sum>r\<in>{r. P r}. f r)" (is "?F sums _") proof cases assume "{r. P r} = {}" hence "\<And>r. \<not> P r" by auto thus ?thesis by (simp add: sums_zero) next assume not_empty: "{r. P r} \<noteq> {}" have "?F sums (\<Sum>r = 0..< Suc (Max {r. P r}). ?F r)" by (rule series_zero) (auto simp add: Max_less_iff[OF finite not_empty] less_eq_Suc_le[symmetric]) also have "(\<Sum>r = 0..< Suc (Max {r. P r}). ?F r) = (\<Sum>r\<in>{r. P r}. f r)" by (subst setsum_cases) (auto intro!: setsum_cong simp: Max_ge_iff[OF finite not_empty] less_Suc_eq_le) finally show ?thesis . qed lemma sums_single: fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" shows "(\<lambda>r. if r = i then f r else 0) sums f i" using sums_If_finite[of "\<lambda>r. r = i" f] by simp section "Simple function" text {* Our simple functions are not restricted to positive real numbers. Instead they are just functions with a finite range and are measurable when singleton sets are measurable. *} definition "simple_function M g \<longleftrightarrow> finite (g ` space M) \<and> (\<forall>x \<in> g ` space M. g -` {x} \<inter> space M \<in> sets M)" lemma (in sigma_algebra) simple_functionD: assumes "simple_function M g" shows "finite (g ` space M)" and "g -` X \<inter> space M \<in> sets M" proof - show "finite (g ` space M)" using assms unfolding simple_function_def by auto have "g -` X \<inter> space M = g -` (X \<inter> g`space M) \<inter> space M" by auto also have "\<dots> = (\<Union>x\<in>X \<inter> g`space M. g-`{x} \<inter> space M)" by auto finally show "g -` X \<inter> space M \<in> sets M" using assms by (auto intro!: finite_UN simp del: UN_simps simp: simple_function_def) qed lemma (in sigma_algebra) simple_function_measurable2[intro]: assumes "simple_function M f" "simple_function M g" shows "f -` A \<inter> g -` B \<inter> space M \<in> sets M" proof - have "f -` A \<inter> g -` B \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)" by auto then show ?thesis using assms[THEN simple_functionD(2)] by auto qed lemma (in sigma_algebra) simple_function_indicator_representation: fixes f ::"'a \<Rightarrow> ereal" assumes f: "simple_function M f" and x: "x \<in> space M" shows "f x = (\<Sum>y \<in> f ` space M. y * indicator (f -` {y} \<inter> space M) x)" (is "?l = ?r") proof - have "?r = (\<Sum>y \<in> f ` space M. (if y = f x then y * indicator (f -` {y} \<inter> space M) x else 0))" by (auto intro!: setsum_cong2) also have "... = f x * indicator (f -` {f x} \<inter> space M) x" using assms by (auto dest: simple_functionD simp: setsum_delta) also have "... = f x" using x by (auto simp: indicator_def) finally show ?thesis by auto qed lemma (in measure_space) simple_function_notspace: "simple_function M (\<lambda>x. h x * indicator (- space M) x::ereal)" (is "simple_function M ?h") proof - have "?h ` space M \<subseteq> {0}" unfolding indicator_def by auto hence [simp, intro]: "finite (?h ` space M)" by (auto intro: finite_subset) have "?h -` {0} \<inter> space M = space M" by auto thus ?thesis unfolding simple_function_def by auto qed lemma (in sigma_algebra) simple_function_cong: assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" shows "simple_function M f \<longleftrightarrow> simple_function M g" proof - have "f ` space M = g ` space M" "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M" using assms by (auto intro!: image_eqI) thus ?thesis unfolding simple_function_def using assms by simp qed lemma (in sigma_algebra) simple_function_cong_algebra: assumes "sets N = sets M" "space N = space M" shows "simple_function M f \<longleftrightarrow> simple_function N f" unfolding simple_function_def assms .. lemma (in sigma_algebra) borel_measurable_simple_function: assumes "simple_function M f" shows "f \<in> borel_measurable M" proof (rule borel_measurableI) fix S let ?I = "f ` (f -` S \<inter> space M)" have *: "(\<Union>x\<in>?I. f -` {x} \<inter> space M) = f -` S \<inter> space M" (is "?U = _") by auto have "finite ?I" using assms unfolding simple_function_def using finite_subset[of "f ` (f -` S \<inter> space M)" "f ` space M"] by auto hence "?U \<in> sets M" apply (rule finite_UN) using assms unfolding simple_function_def by auto thus "f -` S \<inter> space M \<in> sets M" unfolding * . qed lemma (in sigma_algebra) simple_function_borel_measurable: fixes f :: "'a \<Rightarrow> 'x::{t2_space}" assumes "f \<in> borel_measurable M" and "finite (f ` space M)" shows "simple_function M f" using assms unfolding simple_function_def by (auto intro: borel_measurable_vimage) lemma (in sigma_algebra) simple_function_eq_borel_measurable: fixes f :: "'a \<Rightarrow> ereal" shows "simple_function M f \<longleftrightarrow> finite (f`space M) \<and> f \<in> borel_measurable M" using simple_function_borel_measurable[of f] borel_measurable_simple_function[of f] by (fastforce simp: simple_function_def) lemma (in sigma_algebra) simple_function_const[intro, simp]: "simple_function M (\<lambda>x. c)" by (auto intro: finite_subset simp: simple_function_def) lemma (in sigma_algebra) simple_function_compose[intro, simp]: assumes "simple_function M f" shows "simple_function M (g \<circ> f)" unfolding simple_function_def proof safe show "finite ((g \<circ> f) ` space M)" using assms unfolding simple_function_def by (auto simp: image_compose) next fix x assume "x \<in> space M" let ?G = "g -` {g (f x)} \<inter> (f`space M)" have *: "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M = (\<Union>x\<in>?G. f -` {x} \<inter> space M)" by auto show "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M \<in> sets M" using assms unfolding simple_function_def * by (rule_tac finite_UN) (auto intro!: finite_UN) qed lemma (in sigma_algebra) simple_function_indicator[intro, simp]: assumes "A \<in> sets M" shows "simple_function M (indicator A)" proof - have "indicator A ` space M \<subseteq> {0, 1}" (is "?S \<subseteq> _") by (auto simp: indicator_def) hence "finite ?S" by (rule finite_subset) simp moreover have "- A \<inter> space M = space M - A" by auto ultimately show ?thesis unfolding simple_function_def using assms by (auto simp: indicator_def_raw) qed lemma (in sigma_algebra) simple_function_Pair[intro, simp]: assumes "simple_function M f" assumes "simple_function M g" shows "simple_function M (\<lambda>x. (f x, g x))" (is "simple_function M ?p") unfolding simple_function_def proof safe show "finite (?p ` space M)" using assms unfolding simple_function_def by (rule_tac finite_subset[of _ "f`space M \<times> g`space M"]) auto next fix x assume "x \<in> space M" have "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M = (f -` {f x} \<inter> space M) \<inter> (g -` {g x} \<inter> space M)" by auto with `x \<in> space M` show "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M \<in> sets M" using assms unfolding simple_function_def by auto qed lemma (in sigma_algebra) simple_function_compose1: assumes "simple_function M f" shows "simple_function M (\<lambda>x. g (f x))" using simple_function_compose[OF assms, of g] by (simp add: comp_def) lemma (in sigma_algebra) simple_function_compose2: assumes "simple_function M f" and "simple_function M g" shows "simple_function M (\<lambda>x. h (f x) (g x))" proof - have "simple_function M ((\<lambda>(x, y). h x y) \<circ> (\<lambda>x. (f x, g x)))" using assms by auto thus ?thesis by (simp_all add: comp_def) qed lemmas (in sigma_algebra) simple_function_add[intro, simp] = simple_function_compose2[where h="op +"] and simple_function_diff[intro, simp] = simple_function_compose2[where h="op -"] and simple_function_uminus[intro, simp] = simple_function_compose[where g="uminus"] and simple_function_mult[intro, simp] = simple_function_compose2[where h="op *"] and simple_function_div[intro, simp] = simple_function_compose2[where h="op /"] and simple_function_inverse[intro, simp] = simple_function_compose[where g="inverse"] and simple_function_max[intro, simp] = simple_function_compose2[where h=max] lemma (in sigma_algebra) simple_function_setsum[intro, simp]: assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" shows "simple_function M (\<lambda>x. \<Sum>i\<in>P. f i x)" proof cases assume "finite P" from this assms show ?thesis by induct auto qed auto lemma (in sigma_algebra) fixes f g :: "'a \<Rightarrow> real" assumes sf: "simple_function M f" shows simple_function_ereal[intro, simp]: "simple_function M (\<lambda>x. ereal (f x))" by (auto intro!: simple_function_compose1[OF sf]) lemma (in sigma_algebra) fixes f g :: "'a \<Rightarrow> nat" assumes sf: "simple_function M f" shows simple_function_real_of_nat[intro, simp]: "simple_function M (\<lambda>x. real (f x))" by (auto intro!: simple_function_compose1[OF sf]) lemma (in sigma_algebra) borel_measurable_implies_simple_function_sequence: fixes u :: "'a \<Rightarrow> ereal" assumes u: "u \<in> borel_measurable M" shows "\<exists>f. incseq f \<and> (\<forall>i. \<infinity> \<notin> range (f i) \<and> simple_function M (f i)) \<and> (\<forall>x. (SUP i. f i x) = max 0 (u x)) \<and> (\<forall>i x. 0 \<le> f i x)" proof - def f \<equiv> "\<lambda>x i. if real i \<le> u x then i * 2 ^ i else natfloor (real (u x) * 2 ^ i)" { fix x j have "f x j \<le> j * 2 ^ j" unfolding f_def proof (split split_if, intro conjI impI) assume "\<not> real j \<le> u x" then have "natfloor (real (u x) * 2 ^ j) \<le> natfloor (j * 2 ^ j)" by (cases "u x") (auto intro!: natfloor_mono simp: mult_nonneg_nonneg) moreover have "real (natfloor (j * 2 ^ j)) \<le> j * 2^j" by (intro real_natfloor_le) (auto simp: mult_nonneg_nonneg) ultimately show "natfloor (real (u x) * 2 ^ j) \<le> j * 2 ^ j" unfolding real_of_nat_le_iff by auto qed auto } note f_upper = this have real_f: "\<And>i x. real (f x i) = (if real i \<le> u x then i * 2 ^ i else real (natfloor (real (u x) * 2 ^ i)))" unfolding f_def by auto let "?g j x" = "real (f x j) / 2^j :: ereal" show ?thesis proof (intro exI[of _ ?g] conjI allI ballI) fix i have "simple_function M (\<lambda>x. real (f x i))" proof (intro simple_function_borel_measurable) show "(\<lambda>x. real (f x i)) \<in> borel_measurable M" using u by (auto intro!: measurable_If simp: real_f) have "(\<lambda>x. real (f x i))`space M \<subseteq> real`{..i*2^i}" using f_upper[of _ i] by auto then show "finite ((\<lambda>x. real (f x i))`space M)" by (rule finite_subset) auto qed then show "simple_function M (?g i)" by (auto intro: simple_function_ereal simple_function_div) next show "incseq ?g" proof (intro incseq_ereal incseq_SucI le_funI) fix x and i :: nat have "f x i * 2 \<le> f x (Suc i)" unfolding f_def proof ((split split_if)+, intro conjI impI) assume "ereal (real i) \<le> u x" "\<not> ereal (real (Suc i)) \<le> u x" then show "i * 2 ^ i * 2 \<le> natfloor (real (u x) * 2 ^ Suc i)" by (cases "u x") (auto intro!: le_natfloor) next assume "\<not> ereal (real i) \<le> u x" "ereal (real (Suc i)) \<le> u x" then show "natfloor (real (u x) * 2 ^ i) * 2 \<le> Suc i * 2 ^ Suc i" by (cases "u x") auto next assume "\<not> ereal (real i) \<le> u x" "\<not> ereal (real (Suc i)) \<le> u x" have "natfloor (real (u x) * 2 ^ i) * 2 = natfloor (real (u x) * 2 ^ i) * natfloor 2" by simp also have "\<dots> \<le> natfloor (real (u x) * 2 ^ i * 2)" proof cases assume "0 \<le> u x" then show ?thesis by (intro le_mult_natfloor) next assume "\<not> 0 \<le> u x" then show ?thesis by (cases "u x") (auto simp: natfloor_neg mult_nonpos_nonneg) qed also have "\<dots> = natfloor (real (u x) * 2 ^ Suc i)" by (simp add: ac_simps) finally show "natfloor (real (u x) * 2 ^ i) * 2 \<le> natfloor (real (u x) * 2 ^ Suc i)" . qed simp then show "?g i x \<le> ?g (Suc i) x" by (auto simp: field_simps) qed next fix x show "(SUP i. ?g i x) = max 0 (u x)" proof (rule ereal_SUPI) fix i show "?g i x \<le> max 0 (u x)" unfolding max_def f_def by (cases "u x") (auto simp: field_simps real_natfloor_le natfloor_neg mult_nonpos_nonneg mult_nonneg_nonneg) next fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> ?g i x \<le> y" have "\<And>i. 0 \<le> ?g i x" by (auto simp: divide_nonneg_pos) from order_trans[OF this *] have "0 \<le> y" by simp show "max 0 (u x) \<le> y" proof (cases y) case (real r) with * have *: "\<And>i. f x i \<le> r * 2^i" by (auto simp: divide_le_eq) from reals_Archimedean2[of r] * have "u x \<noteq> \<infinity>" by (auto simp: f_def) (metis less_le_not_le) then have "\<exists>p. max 0 (u x) = ereal p \<and> 0 \<le> p" by (cases "u x") (auto simp: max_def) then guess p .. note ux = this obtain m :: nat where m: "p < real m" using reals_Archimedean2 .. have "p \<le> r" proof (rule ccontr) assume "\<not> p \<le> r" with LIMSEQ_inverse_realpow_zero[unfolded LIMSEQ_iff, rule_format, of 2 "p - r"] obtain N where "\<forall>n\<ge>N. r * 2^n < p * 2^n - 1" by (auto simp: inverse_eq_divide field_simps) then have "r * 2^max N m < p * 2^max N m - 1" by simp moreover have "real (natfloor (p * 2 ^ max N m)) \<le> r * 2 ^ max N m" using *[of "max N m"] m unfolding real_f using ux by (cases "0 \<le> u x") (simp_all add: max_def mult_nonneg_nonneg split: split_if_asm) then have "p * 2 ^ max N m - 1 < r * 2 ^ max N m" by (metis real_natfloor_gt_diff_one less_le_trans) ultimately show False by auto qed then show "max 0 (u x) \<le> y" using real ux by simp qed (insert `0 \<le> y`, auto) qed qed (auto simp: divide_nonneg_pos) qed lemma (in sigma_algebra) borel_measurable_implies_simple_function_sequence': fixes u :: "'a \<Rightarrow> ereal" assumes u: "u \<in> borel_measurable M" obtains f where "\<And>i. simple_function M (f i)" "incseq f" "\<And>i. \<infinity> \<notin> range (f i)" "\<And>x. (SUP i. f i x) = max 0 (u x)" "\<And>i x. 0 \<le> f i x" using borel_measurable_implies_simple_function_sequence[OF u] by auto lemma (in sigma_algebra) simple_function_If_set: assumes sf: "simple_function M f" "simple_function M g" and A: "A \<inter> space M \<in> sets M" shows "simple_function M (\<lambda>x. if x \<in> A then f x else g x)" (is "simple_function M ?IF") proof - def F \<equiv> "\<lambda>x. f -` {x} \<inter> space M" and G \<equiv> "\<lambda>x. g -` {x} \<inter> space M" show ?thesis unfolding simple_function_def proof safe have "?IF ` space M \<subseteq> f ` space M \<union> g ` space M" by auto from finite_subset[OF this] assms show "finite (?IF ` space M)" unfolding simple_function_def by auto next fix x assume "x \<in> space M" then have *: "?IF -` {?IF x} \<inter> space M = (if x \<in> A then ((F (f x) \<inter> (A \<inter> space M)) \<union> (G (f x) - (G (f x) \<inter> (A \<inter> space M)))) else ((F (g x) \<inter> (A \<inter> space M)) \<union> (G (g x) - (G (g x) \<inter> (A \<inter> space M)))))" using sets_into_space[OF A] by (auto split: split_if_asm simp: G_def F_def) have [intro]: "\<And>x. F x \<in> sets M" "\<And>x. G x \<in> sets M" unfolding F_def G_def using sf[THEN simple_functionD(2)] by auto show "?IF -` {?IF x} \<inter> space M \<in> sets M" unfolding * using A by auto qed qed lemma (in sigma_algebra) simple_function_If: assumes sf: "simple_function M f" "simple_function M g" and P: "{x\<in>space M. P x} \<in> sets M" shows "simple_function M (\<lambda>x. if P x then f x else g x)" proof - have "{x\<in>space M. P x} = {x. P x} \<inter> space M" by auto with simple_function_If_set[OF sf, of "{x. P x}"] P show ?thesis by simp qed lemma (in measure_space) simple_function_restricted: fixes f :: "'a \<Rightarrow> ereal" assumes "A \<in> sets M" shows "simple_function (restricted_space A) f \<longleftrightarrow> simple_function M (\<lambda>x. f x * indicator A x)" (is "simple_function ?R f \<longleftrightarrow> simple_function M ?f") proof - interpret R: sigma_algebra ?R by (rule restricted_sigma_algebra[OF `A \<in> sets M`]) have f: "finite (f`A) \<longleftrightarrow> finite (?f`space M)" proof cases assume "A = space M" then have "f`A = ?f`space M" by (fastforce simp: image_iff) then show ?thesis by simp next assume "A \<noteq> space M" then obtain x where x: "x \<in> space M" "x \<notin> A" using sets_into_space `A \<in> sets M` by auto have *: "?f`space M = f`A \<union> {0}" proof (auto simp add: image_iff) show "\<exists>x\<in>space M. f x = 0 \<or> indicator A x = 0" using x by (auto intro!: bexI[of _ x]) next fix x assume "x \<in> A" then show "\<exists>y\<in>space M. f x = f y * indicator A y" using `A \<in> sets M` sets_into_space by (auto intro!: bexI[of _ x]) next fix x assume "indicator A x \<noteq> (0::ereal)" then have "x \<in> A" by (auto simp: indicator_def split: split_if_asm) moreover assume "x \<in> space M" "\<forall>y\<in>A. ?f x \<noteq> f y" ultimately show "f x = 0" by auto qed then show ?thesis by auto qed then show ?thesis unfolding simple_function_eq_borel_measurable R.simple_function_eq_borel_measurable unfolding borel_measurable_restricted[OF `A \<in> sets M`] using assms(1)[THEN sets_into_space] by (auto simp: indicator_def) qed lemma (in sigma_algebra) simple_function_subalgebra: assumes "simple_function N f" and N_subalgebra: "sets N \<subseteq> sets M" "space N = space M" shows "simple_function M f" using assms unfolding simple_function_def by auto lemma (in measure_space) simple_function_vimage: assumes T: "sigma_algebra M'" "T \<in> measurable M M'" and f: "simple_function M' f" shows "simple_function M (\<lambda>x. f (T x))" proof (intro simple_function_def[THEN iffD2] conjI ballI) interpret T: sigma_algebra M' by fact have "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'" using T unfolding measurable_def by auto then show "finite ((\<lambda>x. f (T x)) ` space M)" using f unfolding simple_function_def by (auto intro: finite_subset) fix i assume i: "i \<in> (\<lambda>x. f (T x)) ` space M" then have "i \<in> f ` space M'" using T unfolding measurable_def by auto then have "f -` {i} \<inter> space M' \<in> sets M'" using f unfolding simple_function_def by auto then have "T -` (f -` {i} \<inter> space M') \<inter> space M \<in> sets M" using T unfolding measurable_def by auto also have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M" using T unfolding measurable_def by auto finally show "(\<lambda>x. f (T x)) -` {i} \<inter> space M \<in> sets M" . qed section "Simple integral" definition simple_integral_def: "integral\<^isup>S M f = (\<Sum>x \<in> f ` space M. x * measure M (f -` {x} \<inter> space M))" syntax "_simple_integral" :: "pttrn \<Rightarrow> ereal \<Rightarrow> ('a, 'b) measure_space_scheme \<Rightarrow> ereal" ("\<integral>\<^isup>S _. _ \<partial>_" [60,61] 110) translations "\<integral>\<^isup>S x. f \<partial>M" == "CONST integral\<^isup>S M (%x. f)" lemma (in measure_space) simple_integral_cong: assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" shows "integral\<^isup>S M f = integral\<^isup>S M g" proof - have "f ` space M = g ` space M" "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M" using assms by (auto intro!: image_eqI) thus ?thesis unfolding simple_integral_def by simp qed lemma (in measure_space) simple_integral_cong_measure: assumes "\<And>A. A \<in> sets M \<Longrightarrow> measure N A = \<mu> A" "sets N = sets M" "space N = space M" and "simple_function M f" shows "integral\<^isup>S N f = integral\<^isup>S M f" proof - interpret v: measure_space N by (rule measure_space_cong) fact+ from simple_functionD[OF `simple_function M f`] assms show ?thesis by (auto intro!: setsum_cong simp: simple_integral_def) qed lemma (in measure_space) simple_integral_const[simp]: "(\<integral>\<^isup>Sx. c \<partial>M) = c * \<mu> (space M)" proof (cases "space M = {}") case True thus ?thesis unfolding simple_integral_def by simp next case False hence "(\<lambda>x. c) ` space M = {c}" by auto thus ?thesis unfolding simple_integral_def by simp qed lemma (in measure_space) simple_function_partition: assumes f: "simple_function M f" and g: "simple_function M g" shows "integral\<^isup>S M f = (\<Sum>A\<in>(\<lambda>x. f -` {f x} \<inter> g -` {g x} \<inter> space M) ` space M. the_elem (f`A) * \<mu> A)" (is "_ = setsum _ (?p ` space M)") proof- let "?sub x" = "?p ` (f -` {x} \<inter> space M)" let ?SIGMA = "Sigma (f`space M) ?sub" have [intro]: "finite (f ` space M)" "finite (g ` space M)" using assms unfolding simple_function_def by simp_all { fix A have "?p ` (A \<inter> space M) \<subseteq> (\<lambda>(x,y). f -` {x} \<inter> g -` {y} \<inter> space M) ` (f`space M \<times> g`space M)" by auto hence "finite (?p ` (A \<inter> space M))" by (rule finite_subset) auto } note this[intro, simp] note sets = simple_function_measurable2[OF f g] { fix x assume "x \<in> space M" have "\<Union>(?sub (f x)) = (f -` {f x} \<inter> space M)" by auto with sets have "\<mu> (f -` {f x} \<inter> space M) = setsum \<mu> (?sub (f x))" by (subst measure_Union) auto } hence "integral\<^isup>S M f = (\<Sum>(x,A)\<in>?SIGMA. x * \<mu> A)" unfolding simple_integral_def using f sets by (subst setsum_Sigma[symmetric]) (auto intro!: setsum_cong setsum_ereal_right_distrib) also have "\<dots> = (\<Sum>A\<in>?p ` space M. the_elem (f`A) * \<mu> A)" proof - have [simp]: "\<And>x. x \<in> space M \<Longrightarrow> f ` ?p x = {f x}" by (auto intro!: imageI) have "(\<lambda>A. (the_elem (f ` A), A)) ` ?p ` space M = (\<lambda>x. (f x, ?p x)) ` space M" proof safe fix x assume "x \<in> space M" thus "(f x, ?p x) \<in> (\<lambda>A. (the_elem (f`A), A)) ` ?p ` space M" by (auto intro!: image_eqI[of _ _ "?p x"]) qed auto thus ?thesis apply (auto intro!: setsum_reindex_cong[of "\<lambda>A. (the_elem (f`A), A)"] inj_onI) apply (rule_tac x="xa" in image_eqI) by simp_all qed finally show ?thesis . qed lemma (in measure_space) simple_integral_add[simp]: assumes f: "simple_function M f" and "\<And>x. 0 \<le> f x" and g: "simple_function M g" and "\<And>x. 0 \<le> g x" shows "(\<integral>\<^isup>Sx. f x + g x \<partial>M) = integral\<^isup>S M f + integral\<^isup>S M g" proof - { fix x let ?S = "g -` {g x} \<inter> f -` {f x} \<inter> space M" assume "x \<in> space M" hence "(\<lambda>a. f a + g a) ` ?S = {f x + g x}" "f ` ?S = {f x}" "g ` ?S = {g x}" "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M = ?S" by auto } with assms show ?thesis unfolding simple_function_partition[OF simple_function_add[OF f g] simple_function_Pair[OF f g]] simple_function_partition[OF f g] simple_function_partition[OF g f] by (subst (3) Int_commute) (auto simp add: ereal_left_distrib setsum_addf[symmetric] intro!: setsum_cong) qed lemma (in measure_space) simple_integral_setsum[simp]: assumes "\<And>i x. i \<in> P \<Longrightarrow> 0 \<le> f i x" assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" shows "(\<integral>\<^isup>Sx. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^isup>S M (f i))" proof cases assume "finite P" from this assms show ?thesis by induct (auto simp: simple_function_setsum simple_integral_add setsum_nonneg) qed auto lemma (in measure_space) simple_integral_mult[simp]: assumes f: "simple_function M f" "\<And>x. 0 \<le> f x" shows "(\<integral>\<^isup>Sx. c * f x \<partial>M) = c * integral\<^isup>S M f" proof - note mult = simple_function_mult[OF simple_function_const[of c] f(1)] { fix x let ?S = "f -` {f x} \<inter> (\<lambda>x. c * f x) -` {c * f x} \<inter> space M" assume "x \<in> space M" hence "(\<lambda>x. c * f x) ` ?S = {c * f x}" "f ` ?S = {f x}" by auto } with assms show ?thesis unfolding simple_function_partition[OF mult f(1)] simple_function_partition[OF f(1) mult] by (subst setsum_ereal_right_distrib) (auto intro!: ereal_0_le_mult setsum_cong simp: mult_assoc) qed lemma (in measure_space) simple_integral_mono_AE: assumes f: "simple_function M f" and g: "simple_function M g" and mono: "AE x. f x \<le> g x" shows "integral\<^isup>S M f \<le> integral\<^isup>S M g" proof - let "?S x" = "(g -` {g x} \<inter> space M) \<inter> (f -` {f x} \<inter> space M)" have *: "\<And>x. g -` {g x} \<inter> f -` {f x} \<inter> space M = ?S x" "\<And>x. f -` {f x} \<inter> g -` {g x} \<inter> space M = ?S x" by auto show ?thesis unfolding * simple_function_partition[OF f g] simple_function_partition[OF g f] proof (safe intro!: setsum_mono) fix x assume "x \<in> space M" then have *: "f ` ?S x = {f x}" "g ` ?S x = {g x}" by auto show "the_elem (f`?S x) * \<mu> (?S x) \<le> the_elem (g`?S x) * \<mu> (?S x)" proof (cases "f x \<le> g x") case True then show ?thesis using * assms(1,2)[THEN simple_functionD(2)] by (auto intro!: ereal_mult_right_mono) next case False obtain N where N: "{x\<in>space M. \<not> f x \<le> g x} \<subseteq> N" "N \<in> sets M" "\<mu> N = 0" using mono by (auto elim!: AE_E) have "?S x \<subseteq> N" using N `x \<in> space M` False by auto moreover have "?S x \<in> sets M" using assms by (rule_tac Int) (auto intro!: simple_functionD) ultimately have "\<mu> (?S x) \<le> \<mu> N" using `N \<in> sets M` by (auto intro!: measure_mono) moreover have "0 \<le> \<mu> (?S x)" using assms(1,2)[THEN simple_functionD(2)] by auto ultimately have "\<mu> (?S x) = 0" using `\<mu> N = 0` by auto then show ?thesis by simp qed qed qed lemma (in measure_space) simple_integral_mono: assumes "simple_function M f" and "simple_function M g" and mono: "\<And> x. x \<in> space M \<Longrightarrow> f x \<le> g x" shows "integral\<^isup>S M f \<le> integral\<^isup>S M g" using assms by (intro simple_integral_mono_AE) auto lemma (in measure_space) simple_integral_cong_AE: assumes "simple_function M f" and "simple_function M g" and "AE x. f x = g x" shows "integral\<^isup>S M f = integral\<^isup>S M g" using assms by (auto simp: eq_iff intro!: simple_integral_mono_AE) lemma (in measure_space) simple_integral_cong': assumes sf: "simple_function M f" "simple_function M g" and mea: "\<mu> {x\<in>space M. f x \<noteq> g x} = 0" shows "integral\<^isup>S M f = integral\<^isup>S M g" proof (intro simple_integral_cong_AE sf AE_I) show "\<mu> {x\<in>space M. f x \<noteq> g x} = 0" by fact show "{x \<in> space M. f x \<noteq> g x} \<in> sets M" using sf[THEN borel_measurable_simple_function] by auto qed simp lemma (in measure_space) simple_integral_indicator: assumes "A \<in> sets M" assumes "simple_function M f" shows "(\<integral>\<^isup>Sx. f x * indicator A x \<partial>M) = (\<Sum>x \<in> f ` space M. x * \<mu> (f -` {x} \<inter> space M \<inter> A))" proof cases assume "A = space M" moreover hence "(\<integral>\<^isup>Sx. f x * indicator A x \<partial>M) = integral\<^isup>S M f" by (auto intro!: simple_integral_cong) moreover have "\<And>X. X \<inter> space M \<inter> space M = X \<inter> space M" by auto ultimately show ?thesis by (simp add: simple_integral_def) next assume "A \<noteq> space M" then obtain x where x: "x \<in> space M" "x \<notin> A" using sets_into_space[OF assms(1)] by auto have I: "(\<lambda>x. f x * indicator A x) ` space M = f ` A \<union> {0}" (is "?I ` _ = _") proof safe fix y assume "?I y \<notin> f ` A" hence "y \<notin> A" by auto thus "?I y = 0" by auto next fix y assume "y \<in> A" thus "f y \<in> ?I ` space M" using sets_into_space[OF assms(1)] by (auto intro!: image_eqI[of _ _ y]) next show "0 \<in> ?I ` space M" using x by (auto intro!: image_eqI[of _ _ x]) qed have *: "(\<integral>\<^isup>Sx. f x * indicator A x \<partial>M) = (\<Sum>x \<in> f ` space M \<union> {0}. x * \<mu> (f -` {x} \<inter> space M \<inter> A))" unfolding simple_integral_def I proof (rule setsum_mono_zero_cong_left) show "finite (f ` space M \<union> {0})" using assms(2) unfolding simple_function_def by auto show "f ` A \<union> {0} \<subseteq> f`space M \<union> {0}" using sets_into_space[OF assms(1)] by auto have "\<And>x. f x \<notin> f ` A \<Longrightarrow> f -` {f x} \<inter> space M \<inter> A = {}" by (auto simp: image_iff) thus "\<forall>i\<in>f ` space M \<union> {0} - (f ` A \<union> {0}). i * \<mu> (f -` {i} \<inter> space M \<inter> A) = 0" by auto next fix x assume "x \<in> f`A \<union> {0}" hence "x \<noteq> 0 \<Longrightarrow> ?I -` {x} \<inter> space M = f -` {x} \<inter> space M \<inter> A" by (auto simp: indicator_def split: split_if_asm) thus "x * \<mu> (?I -` {x} \<inter> space M) = x * \<mu> (f -` {x} \<inter> space M \<inter> A)" by (cases "x = 0") simp_all qed show ?thesis unfolding * using assms(2) unfolding simple_function_def by (auto intro!: setsum_mono_zero_cong_right) qed lemma (in measure_space) simple_integral_indicator_only[simp]: assumes "A \<in> sets M" shows "integral\<^isup>S M (indicator A) = \<mu> A" proof cases assume "space M = {}" hence "A = {}" using sets_into_space[OF assms] by auto thus ?thesis unfolding simple_integral_def using `space M = {}` by auto next assume "space M \<noteq> {}" hence "(\<lambda>x. 1) ` space M = {1::ereal}" by auto thus ?thesis using simple_integral_indicator[OF assms simple_function_const[of 1]] using sets_into_space[OF assms] by (auto intro!: arg_cong[where f="\<mu>"]) qed lemma (in measure_space) simple_integral_null_set: assumes "simple_function M u" "\<And>x. 0 \<le> u x" and "N \<in> null_sets" shows "(\<integral>\<^isup>Sx. u x * indicator N x \<partial>M) = 0" proof - have "AE x. indicator N x = (0 :: ereal)" using `N \<in> null_sets` by (auto simp: indicator_def intro!: AE_I[of _ N]) then have "(\<integral>\<^isup>Sx. u x * indicator N x \<partial>M) = (\<integral>\<^isup>Sx. 0 \<partial>M)" using assms apply (intro simple_integral_cong_AE) by auto then show ?thesis by simp qed lemma (in measure_space) simple_integral_cong_AE_mult_indicator: assumes sf: "simple_function M f" and eq: "AE x. x \<in> S" and "S \<in> sets M" shows "integral\<^isup>S M f = (\<integral>\<^isup>Sx. f x * indicator S x \<partial>M)" using assms by (intro simple_integral_cong_AE) auto lemma (in measure_space) simple_integral_restricted: assumes "A \<in> sets M" assumes sf: "simple_function M (\<lambda>x. f x * indicator A x)" shows "integral\<^isup>S (restricted_space A) f = (\<integral>\<^isup>Sx. f x * indicator A x \<partial>M)" (is "_ = integral\<^isup>S M ?f") unfolding simple_integral_def proof (simp, safe intro!: setsum_mono_zero_cong_left) from sf show "finite (?f ` space M)" unfolding simple_function_def by auto next fix x assume "x \<in> A" then show "f x \<in> ?f ` space M" using sets_into_space `A \<in> sets M` by (auto intro!: image_eqI[of _ _ x]) next fix x assume "x \<in> space M" "?f x \<notin> f`A" then have "x \<notin> A" by (auto simp: image_iff) then show "?f x * \<mu> (?f -` {?f x} \<inter> space M) = 0" by simp next fix x assume "x \<in> A" then have "f x \<noteq> 0 \<Longrightarrow> f -` {f x} \<inter> A = ?f -` {f x} \<inter> space M" using `A \<in> sets M` sets_into_space by (auto simp: indicator_def split: split_if_asm) then show "f x * \<mu> (f -` {f x} \<inter> A) = f x * \<mu> (?f -` {f x} \<inter> space M)" unfolding ereal_mult_cancel_left by auto qed lemma (in measure_space) simple_integral_subalgebra: assumes N: "measure_space N" and [simp]: "space N = space M" "measure N = measure M" shows "integral\<^isup>S N = integral\<^isup>S M" unfolding simple_integral_def_raw by simp lemma (in measure_space) simple_integral_vimage: assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'" and f: "simple_function M' f" shows "integral\<^isup>S M' f = (\<integral>\<^isup>S x. f (T x) \<partial>M)" proof - interpret T: measure_space M' by (rule measure_space_vimage[OF T]) show "integral\<^isup>S M' f = (\<integral>\<^isup>S x. f (T x) \<partial>M)" unfolding simple_integral_def proof (intro setsum_mono_zero_cong_right ballI) show "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'" using T unfolding measurable_def measure_preserving_def by auto show "finite (f ` space M')" using f unfolding simple_function_def by auto next fix i assume "i \<in> f ` space M' - (\<lambda>x. f (T x)) ` space M" then have "T -` (f -` {i} \<inter> space M') \<inter> space M = {}" by (auto simp: image_iff) with f[THEN T.simple_functionD(2), THEN measure_preservingD[OF T(2)], of "{i}"] show "i * T.\<mu> (f -` {i} \<inter> space M') = 0" by simp next fix i assume "i \<in> (\<lambda>x. f (T x)) ` space M" then have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M" using T unfolding measurable_def measure_preserving_def by auto with f[THEN T.simple_functionD(2), THEN measure_preservingD[OF T(2)], of "{i}"] show "i * T.\<mu> (f -` {i} \<inter> space M') = i * \<mu> ((\<lambda>x. f (T x)) -` {i} \<inter> space M)" by auto qed qed lemma (in measure_space) simple_integral_cmult_indicator: assumes A: "A \<in> sets M" shows "(\<integral>\<^isup>Sx. c * indicator A x \<partial>M) = c * \<mu> A" using simple_integral_mult[OF simple_function_indicator[OF A]] unfolding simple_integral_indicator_only[OF A] by simp lemma (in measure_space) simple_integral_positive: assumes f: "simple_function M f" and ae: "AE x. 0 \<le> f x" shows "0 \<le> integral\<^isup>S M f" proof - have "integral\<^isup>S M (\<lambda>x. 0) \<le> integral\<^isup>S M f" using simple_integral_mono_AE[OF _ f ae] by auto then show ?thesis by simp qed section "Continuous positive integration" definition positive_integral_def: "integral\<^isup>P M f = (SUP g : {g. simple_function M g \<and> g \<le> max 0 \<circ> f}. integral\<^isup>S M g)" syntax "_positive_integral" :: "pttrn \<Rightarrow> ereal \<Rightarrow> ('a, 'b) measure_space_scheme \<Rightarrow> ereal" ("\<integral>\<^isup>+ _. _ \<partial>_" [60,61] 110) translations "\<integral>\<^isup>+ x. f \<partial>M" == "CONST integral\<^isup>P M (%x. f)" lemma (in measure_space) positive_integral_cong_measure: assumes "\<And>A. A \<in> sets M \<Longrightarrow> measure N A = \<mu> A" "sets N = sets M" "space N = space M" shows "integral\<^isup>P N f = integral\<^isup>P M f" unfolding positive_integral_def unfolding simple_function_cong_algebra[OF assms(2,3), symmetric] using AE_cong_measure[OF assms] using simple_integral_cong_measure[OF assms] by (auto intro!: SUP_cong) lemma (in measure_space) positive_integral_positive: "0 \<le> integral\<^isup>P M f" by (auto intro!: SUP_upper2[of "\<lambda>x. 0"] simp: positive_integral_def le_fun_def) lemma (in measure_space) positive_integral_def_finite: "integral\<^isup>P M f = (SUP g : {g. simple_function M g \<and> g \<le> max 0 \<circ> f \<and> range g \<subseteq> {0 ..< \<infinity>}}. integral\<^isup>S M g)" (is "_ = SUPR ?A ?f") unfolding positive_integral_def proof (safe intro!: antisym SUP_least) fix g assume g: "simple_function M g" "g \<le> max 0 \<circ> f" let ?G = "{x \<in> space M. \<not> g x \<noteq> \<infinity>}" note gM = g(1)[THEN borel_measurable_simple_function] have \<mu>G_pos: "0 \<le> \<mu> ?G" using gM by auto let "?g y x" = "if g x = \<infinity> then y else max 0 (g x)" from g gM have g_in_A: "\<And>y. 0 \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> ?g y \<in> ?A" apply (safe intro!: simple_function_max simple_function_If) apply (force simp: max_def le_fun_def split: split_if_asm)+ done show "integral\<^isup>S M g \<le> SUPR ?A ?f" proof cases have g0: "?g 0 \<in> ?A" by (intro g_in_A) auto assume "\<mu> ?G = 0" with gM have "AE x. x \<notin> ?G" by (simp add: AE_iff_null_set) with gM g show ?thesis by (intro SUP_upper2[OF g0] simple_integral_mono_AE) (auto simp: max_def intro!: simple_function_If) next assume \<mu>G: "\<mu> ?G \<noteq> 0" have "SUPR ?A (integral\<^isup>S M) = \<infinity>" proof (intro SUP_PInfty) fix n :: nat let ?y = "ereal (real n) / (if \<mu> ?G = \<infinity> then 1 else \<mu> ?G)" have "0 \<le> ?y" "?y \<noteq> \<infinity>" using \<mu>G \<mu>G_pos by (auto simp: ereal_divide_eq) then have "?g ?y \<in> ?A" by (rule g_in_A) have "real n \<le> ?y * \<mu> ?G" using \<mu>G \<mu>G_pos by (cases "\<mu> ?G") (auto simp: field_simps) also have "\<dots> = (\<integral>\<^isup>Sx. ?y * indicator ?G x \<partial>M)" using `0 \<le> ?y` `?g ?y \<in> ?A` gM by (subst simple_integral_cmult_indicator) auto also have "\<dots> \<le> integral\<^isup>S M (?g ?y)" using `?g ?y \<in> ?A` gM by (intro simple_integral_mono) auto finally show "\<exists>i\<in>?A. real n \<le> integral\<^isup>S M i" using `?g ?y \<in> ?A` by blast qed then show ?thesis by simp qed qed (auto intro: SUP_upper) lemma (in measure_space) positive_integral_mono_AE: assumes ae: "AE x. u x \<le> v x" shows "integral\<^isup>P M u \<le> integral\<^isup>P M v" unfolding positive_integral_def proof (safe intro!: SUP_mono) fix n assume n: "simple_function M n" "n \<le> max 0 \<circ> u" from ae[THEN AE_E] guess N . note N = this then have ae_N: "AE x. x \<notin> N" by (auto intro: AE_not_in) let "?n x" = "n x * indicator (space M - N) x" have "AE x. n x \<le> ?n x" "simple_function M ?n" using n N ae_N by auto moreover { fix x have "?n x \<le> max 0 (v x)" proof cases assume x: "x \<in> space M - N" with N have "u x \<le> v x" by auto with n(2)[THEN le_funD, of x] x show ?thesis by (auto simp: max_def split: split_if_asm) qed simp } then have "?n \<le> max 0 \<circ> v" by (auto simp: le_funI) moreover have "integral\<^isup>S M n \<le> integral\<^isup>S M ?n" using ae_N N n by (auto intro!: simple_integral_mono_AE) ultimately show "\<exists>m\<in>{g. simple_function M g \<and> g \<le> max 0 \<circ> v}. integral\<^isup>S M n \<le> integral\<^isup>S M m" by force qed lemma (in measure_space) positive_integral_mono: "(\<And>x. x \<in> space M \<Longrightarrow> u x \<le> v x) \<Longrightarrow> integral\<^isup>P M u \<le> integral\<^isup>P M v" by (auto intro: positive_integral_mono_AE) lemma (in measure_space) positive_integral_cong_AE: "AE x. u x = v x \<Longrightarrow> integral\<^isup>P M u = integral\<^isup>P M v" by (auto simp: eq_iff intro!: positive_integral_mono_AE) lemma (in measure_space) positive_integral_cong: "(\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^isup>P M u = integral\<^isup>P M v" by (auto intro: positive_integral_cong_AE) lemma (in measure_space) positive_integral_eq_simple_integral: assumes f: "simple_function M f" "\<And>x. 0 \<le> f x" shows "integral\<^isup>P M f = integral\<^isup>S M f" proof - let "?f x" = "f x * indicator (space M) x" have f': "simple_function M ?f" using f by auto with f(2) have [simp]: "max 0 \<circ> ?f = ?f" by (auto simp: fun_eq_iff max_def split: split_indicator) have "integral\<^isup>P M ?f \<le> integral\<^isup>S M ?f" using f' by (force intro!: SUP_least simple_integral_mono simp: le_fun_def positive_integral_def) moreover have "integral\<^isup>S M ?f \<le> integral\<^isup>P M ?f" unfolding positive_integral_def using f' by (auto intro!: SUP_upper) ultimately show ?thesis by (simp cong: positive_integral_cong simple_integral_cong) qed lemma (in measure_space) positive_integral_eq_simple_integral_AE: assumes f: "simple_function M f" "AE x. 0 \<le> f x" shows "integral\<^isup>P M f = integral\<^isup>S M f" proof - have "AE x. f x = max 0 (f x)" using f by (auto split: split_max) with f have "integral\<^isup>P M f = integral\<^isup>S M (\<lambda>x. max 0 (f x))" by (simp cong: positive_integral_cong_AE simple_integral_cong_AE add: positive_integral_eq_simple_integral) with assms show ?thesis by (auto intro!: simple_integral_cong_AE split: split_max) qed lemma (in measure_space) positive_integral_SUP_approx: assumes f: "incseq f" "\<And>i. f i \<in> borel_measurable M" "\<And>i x. 0 \<le> f i x" and u: "simple_function M u" "u \<le> (SUP i. f i)" "u`space M \<subseteq> {0..<\<infinity>}" shows "integral\<^isup>S M u \<le> (SUP i. integral\<^isup>P M (f i))" (is "_ \<le> ?S") proof (rule ereal_le_mult_one_interval) have "0 \<le> (SUP i. integral\<^isup>P M (f i))" using f(3) by (auto intro!: SUP_upper2 positive_integral_positive) then show "(SUP i. integral\<^isup>P M (f i)) \<noteq> -\<infinity>" by auto have u_range: "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> u x \<and> u x \<noteq> \<infinity>" using u(3) by auto fix a :: ereal assume "0 < a" "a < 1" hence "a \<noteq> 0" by auto let "?B i" = "{x \<in> space M. a * u x \<le> f i x}" have B: "\<And>i. ?B i \<in> sets M" using f `simple_function M u` by (auto simp: borel_measurable_simple_function) let "?uB i x" = "u x * indicator (?B i) x" { fix i have "?B i \<subseteq> ?B (Suc i)" proof safe fix i x assume "a * u x \<le> f i x" also have "\<dots> \<le> f (Suc i) x" using `incseq f`[THEN incseq_SucD] unfolding le_fun_def by auto finally show "a * u x \<le> f (Suc i) x" . qed } note B_mono = this note B_u = Int[OF u(1)[THEN simple_functionD(2)] B] let "?B' i n" = "(u -` {i} \<inter> space M) \<inter> ?B n" have measure_conv: "\<And>i. \<mu> (u -` {i} \<inter> space M) = (SUP n. \<mu> (?B' i n))" proof - fix i have 1: "range (?B' i) \<subseteq> sets M" using B_u by auto have 2: "incseq (?B' i)" using B_mono by (auto intro!: incseq_SucI) have "(\<Union>n. ?B' i n) = u -` {i} \<inter> space M" proof safe fix x i assume x: "x \<in> space M" show "x \<in> (\<Union>i. ?B' (u x) i)" proof cases assume "u x = 0" thus ?thesis using `x \<in> space M` f(3) by simp next assume "u x \<noteq> 0" with `a < 1` u_range[OF `x \<in> space M`] have "a * u x < 1 * u x" by (intro ereal_mult_strict_right_mono) (auto simp: image_iff) also have "\<dots> \<le> (SUP i. f i x)" using u(2) by (auto simp: le_fun_def SUP_apply) finally obtain i where "a * u x < f i x" unfolding SUP_def by (auto simp add: less_Sup_iff) hence "a * u x \<le> f i x" by auto thus ?thesis using `x \<in> space M` by auto qed qed then show "?thesis i" using continuity_from_below[OF 1 2] by simp qed have "integral\<^isup>S M u = (SUP i. integral\<^isup>S M (?uB i))" unfolding simple_integral_indicator[OF B `simple_function M u`] proof (subst SUPR_ereal_setsum, safe) fix x n assume "x \<in> space M" with u_range show "incseq (\<lambda>i. u x * \<mu> (?B' (u x) i))" "\<And>i. 0 \<le> u x * \<mu> (?B' (u x) i)" using B_mono B_u by (auto intro!: measure_mono ereal_mult_left_mono incseq_SucI simp: ereal_zero_le_0_iff) next show "integral\<^isup>S M u = (\<Sum>i\<in>u ` space M. SUP n. i * \<mu> (?B' i n))" using measure_conv u_range B_u unfolding simple_integral_def by (auto intro!: setsum_cong SUPR_ereal_cmult[symmetric]) qed moreover have "a * (SUP i. integral\<^isup>S M (?uB i)) \<le> ?S" apply (subst SUPR_ereal_cmult[symmetric]) proof (safe intro!: SUP_mono bexI) fix i have "a * integral\<^isup>S M (?uB i) = (\<integral>\<^isup>Sx. a * ?uB i x \<partial>M)" using B `simple_function M u` u_range by (subst simple_integral_mult) (auto split: split_indicator) also have "\<dots> \<le> integral\<^isup>P M (f i)" proof - have *: "simple_function M (\<lambda>x. a * ?uB i x)" using B `0 < a` u(1) by auto show ?thesis using f(3) * u_range `0 < a` by (subst positive_integral_eq_simple_integral[symmetric]) (auto intro!: positive_integral_mono split: split_indicator) qed finally show "a * integral\<^isup>S M (?uB i) \<le> integral\<^isup>P M (f i)" by auto next fix i show "0 \<le> \<integral>\<^isup>S x. ?uB i x \<partial>M" using B `0 < a` u(1) u_range by (intro simple_integral_positive) (auto split: split_indicator) qed (insert `0 < a`, auto) ultimately show "a * integral\<^isup>S M u \<le> ?S" by simp qed lemma (in measure_space) incseq_positive_integral: assumes "incseq f" shows "incseq (\<lambda>i. integral\<^isup>P M (f i))" proof - have "\<And>i x. f i x \<le> f (Suc i) x" using assms by (auto dest!: incseq_SucD simp: le_fun_def) then show ?thesis by (auto intro!: incseq_SucI positive_integral_mono) qed text {* Beppo-Levi monotone convergence theorem *} lemma (in measure_space) positive_integral_monotone_convergence_SUP: assumes f: "incseq f" "\<And>i. f i \<in> borel_measurable M" "\<And>i x. 0 \<le> f i x" shows "(\<integral>\<^isup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^isup>P M (f i))" proof (rule antisym) show "(SUP j. integral\<^isup>P M (f j)) \<le> (\<integral>\<^isup>+ x. (SUP i. f i x) \<partial>M)" by (auto intro!: SUP_least SUP_upper positive_integral_mono) next show "(\<integral>\<^isup>+ x. (SUP i. f i x) \<partial>M) \<le> (SUP j. integral\<^isup>P M (f j))" unfolding positive_integral_def_finite[of "\<lambda>x. SUP i. f i x"] proof (safe intro!: SUP_least) fix g assume g: "simple_function M g" and "g \<le> max 0 \<circ> (\<lambda>x. SUP i. f i x)" "range g \<subseteq> {0..<\<infinity>}" moreover then have "\<And>x. 0 \<le> (SUP i. f i x)" and g': "g`space M \<subseteq> {0..<\<infinity>}" using f by (auto intro!: SUP_upper2) ultimately show "integral\<^isup>S M g \<le> (SUP j. integral\<^isup>P M (f j))" by (intro positive_integral_SUP_approx[OF f g _ g']) (auto simp: le_fun_def max_def SUP_apply) qed qed lemma (in measure_space) positive_integral_monotone_convergence_SUP_AE: assumes f: "\<And>i. AE x. f i x \<le> f (Suc i) x \<and> 0 \<le> f i x" "\<And>i. f i \<in> borel_measurable M" shows "(\<integral>\<^isup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^isup>P M (f i))" proof - from f have "AE x. \<forall>i. f i x \<le> f (Suc i) x \<and> 0 \<le> f i x" by (simp add: AE_all_countable) from this[THEN AE_E] guess N . note N = this let "?f i x" = "if x \<in> space M - N then f i x else 0" have f_eq: "AE x. \<forall>i. ?f i x = f i x" using N by (auto intro!: AE_I[of _ N]) then have "(\<integral>\<^isup>+ x. (SUP i. f i x) \<partial>M) = (\<integral>\<^isup>+ x. (SUP i. ?f i x) \<partial>M)" by (auto intro!: positive_integral_cong_AE) also have "\<dots> = (SUP i. (\<integral>\<^isup>+ x. ?f i x \<partial>M))" proof (rule positive_integral_monotone_convergence_SUP) show "incseq ?f" using N(1) by (force intro!: incseq_SucI le_funI) { fix i show "(\<lambda>x. if x \<in> space M - N then f i x else 0) \<in> borel_measurable M" using f N(3) by (intro measurable_If_set) auto fix x show "0 \<le> ?f i x" using N(1) by auto } qed also have "\<dots> = (SUP i. (\<integral>\<^isup>+ x. f i x \<partial>M))" using f_eq by (force intro!: arg_cong[where f="SUPR UNIV"] positive_integral_cong_AE ext) finally show ?thesis . qed lemma (in measure_space) positive_integral_monotone_convergence_SUP_AE_incseq: assumes f: "incseq f" "\<And>i. AE x. 0 \<le> f i x" and borel: "\<And>i. f i \<in> borel_measurable M" shows "(\<integral>\<^isup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^isup>P M (f i))" using f[unfolded incseq_Suc_iff le_fun_def] by (intro positive_integral_monotone_convergence_SUP_AE[OF _ borel]) auto lemma (in measure_space) positive_integral_monotone_convergence_simple: assumes f: "incseq f" "\<And>i x. 0 \<le> f i x" "\<And>i. simple_function M (f i)" shows "(SUP i. integral\<^isup>S M (f i)) = (\<integral>\<^isup>+x. (SUP i. f i x) \<partial>M)" using assms unfolding positive_integral_monotone_convergence_SUP[OF f(1) f(3)[THEN borel_measurable_simple_function] f(2)] by (auto intro!: positive_integral_eq_simple_integral[symmetric] arg_cong[where f="SUPR UNIV"] ext) lemma positive_integral_max_0: "(\<integral>\<^isup>+x. max 0 (f x) \<partial>M) = integral\<^isup>P M f" by (simp add: le_fun_def positive_integral_def) lemma (in measure_space) positive_integral_cong_pos: assumes "\<And>x. x \<in> space M \<Longrightarrow> f x \<le> 0 \<and> g x \<le> 0 \<or> f x = g x" shows "integral\<^isup>P M f = integral\<^isup>P M g" proof - have "integral\<^isup>P M (\<lambda>x. max 0 (f x)) = integral\<^isup>P M (\<lambda>x. max 0 (g x))" proof (intro positive_integral_cong) fix x assume "x \<in> space M" from assms[OF this] show "max 0 (f x) = max 0 (g x)" by (auto split: split_max) qed then show ?thesis by (simp add: positive_integral_max_0) qed lemma (in measure_space) SUP_simple_integral_sequences: assumes f: "incseq f" "\<And>i x. 0 \<le> f i x" "\<And>i. simple_function M (f i)" and g: "incseq g" "\<And>i x. 0 \<le> g i x" "\<And>i. simple_function M (g i)" and eq: "AE x. (SUP i. f i x) = (SUP i. g i x)" shows "(SUP i. integral\<^isup>S M (f i)) = (SUP i. integral\<^isup>S M (g i))" (is "SUPR _ ?F = SUPR _ ?G") proof - have "(SUP i. integral\<^isup>S M (f i)) = (\<integral>\<^isup>+x. (SUP i. f i x) \<partial>M)" using f by (rule positive_integral_monotone_convergence_simple) also have "\<dots> = (\<integral>\<^isup>+x. (SUP i. g i x) \<partial>M)" unfolding eq[THEN positive_integral_cong_AE] .. also have "\<dots> = (SUP i. ?G i)" using g by (rule positive_integral_monotone_convergence_simple[symmetric]) finally show ?thesis by simp qed lemma (in measure_space) positive_integral_const[simp]: "0 \<le> c \<Longrightarrow> (\<integral>\<^isup>+ x. c \<partial>M) = c * \<mu> (space M)" by (subst positive_integral_eq_simple_integral) auto lemma (in measure_space) positive_integral_vimage: assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'" and f: "f \<in> borel_measurable M'" shows "integral\<^isup>P M' f = (\<integral>\<^isup>+ x. f (T x) \<partial>M)" proof - interpret T: measure_space M' by (rule measure_space_vimage[OF T]) from T.borel_measurable_implies_simple_function_sequence'[OF f] guess f' . note f' = this let "?f i x" = "f' i (T x)" have inc: "incseq ?f" using f' by (force simp: le_fun_def incseq_def) have sup: "\<And>x. (SUP i. ?f i x) = max 0 (f (T x))" using f'(4) . have sf: "\<And>i. simple_function M (\<lambda>x. f' i (T x))" using simple_function_vimage[OF T(1) measure_preservingD2[OF T(2)] f'(1)] . show "integral\<^isup>P M' f = (\<integral>\<^isup>+ x. f (T x) \<partial>M)" using T.positive_integral_monotone_convergence_simple[OF f'(2,5,1)] positive_integral_monotone_convergence_simple[OF inc f'(5) sf] by (simp add: positive_integral_max_0 simple_integral_vimage[OF T f'(1)] f') qed lemma (in measure_space) positive_integral_linear: assumes f: "f \<in> borel_measurable M" "\<And>x. 0 \<le> f x" and "0 \<le> a" and g: "g \<in> borel_measurable M" "\<And>x. 0 \<le> g x" shows "(\<integral>\<^isup>+ x. a * f x + g x \<partial>M) = a * integral\<^isup>P M f + integral\<^isup>P M g" (is "integral\<^isup>P M ?L = _") proof - from borel_measurable_implies_simple_function_sequence'[OF f(1)] guess u . note u = positive_integral_monotone_convergence_simple[OF this(2,5,1)] this from borel_measurable_implies_simple_function_sequence'[OF g(1)] guess v . note v = positive_integral_monotone_convergence_simple[OF this(2,5,1)] this let "?L' i x" = "a * u i x + v i x" have "?L \<in> borel_measurable M" using assms by auto from borel_measurable_implies_simple_function_sequence'[OF this] guess l . note l = positive_integral_monotone_convergence_simple[OF this(2,5,1)] this have inc: "incseq (\<lambda>i. a * integral\<^isup>S M (u i))" "incseq (\<lambda>i. integral\<^isup>S M (v i))" using u v `0 \<le> a` by (auto simp: incseq_Suc_iff le_fun_def intro!: add_mono ereal_mult_left_mono simple_integral_mono) have pos: "\<And>i. 0 \<le> integral\<^isup>S M (u i)" "\<And>i. 0 \<le> integral\<^isup>S M (v i)" "\<And>i. 0 \<le> a * integral\<^isup>S M (u i)" using u v `0 \<le> a` by (auto simp: simple_integral_positive) { fix i from pos[of i] have "a * integral\<^isup>S M (u i) \<noteq> -\<infinity>" "integral\<^isup>S M (v i) \<noteq> -\<infinity>" by (auto split: split_if_asm) } note not_MInf = this have l': "(SUP i. integral\<^isup>S M (l i)) = (SUP i. integral\<^isup>S M (?L' i))" proof (rule SUP_simple_integral_sequences[OF l(3,6,2)]) show "incseq ?L'" "\<And>i x. 0 \<le> ?L' i x" "\<And>i. simple_function M (?L' i)" using u v `0 \<le> a` unfolding incseq_Suc_iff le_fun_def by (auto intro!: add_mono ereal_mult_left_mono ereal_add_nonneg_nonneg) { fix x { fix i have "a * u i x \<noteq> -\<infinity>" "v i x \<noteq> -\<infinity>" "u i x \<noteq> -\<infinity>" using `0 \<le> a` u(6)[of i x] v(6)[of i x] by auto } then have "(SUP i. a * u i x + v i x) = a * (SUP i. u i x) + (SUP i. v i x)" using `0 \<le> a` u(3) v(3) u(6)[of _ x] v(6)[of _ x] by (subst SUPR_ereal_cmult[symmetric, OF u(6) `0 \<le> a`]) (auto intro!: SUPR_ereal_add simp: incseq_Suc_iff le_fun_def add_mono ereal_mult_left_mono ereal_add_nonneg_nonneg) } then show "AE x. (SUP i. l i x) = (SUP i. ?L' i x)" unfolding l(5) using `0 \<le> a` u(5) v(5) l(5) f(2) g(2) by (intro AE_I2) (auto split: split_max simp add: ereal_add_nonneg_nonneg) qed also have "\<dots> = (SUP i. a * integral\<^isup>S M (u i) + integral\<^isup>S M (v i))" using u(2, 6) v(2, 6) `0 \<le> a` by (auto intro!: arg_cong[where f="SUPR UNIV"] ext) finally have "(\<integral>\<^isup>+ x. max 0 (a * f x + g x) \<partial>M) = a * (\<integral>\<^isup>+x. max 0 (f x) \<partial>M) + (\<integral>\<^isup>+x. max 0 (g x) \<partial>M)" unfolding l(5)[symmetric] u(5)[symmetric] v(5)[symmetric] unfolding l(1)[symmetric] u(1)[symmetric] v(1)[symmetric] apply (subst SUPR_ereal_cmult[symmetric, OF pos(1) `0 \<le> a`]) apply (subst SUPR_ereal_add[symmetric, OF inc not_MInf]) . then show ?thesis by (simp add: positive_integral_max_0) qed lemma (in measure_space) positive_integral_cmult: assumes f: "f \<in> borel_measurable M" "AE x. 0 \<le> f x" "0 \<le> c" shows "(\<integral>\<^isup>+ x. c * f x \<partial>M) = c * integral\<^isup>P M f" proof - have [simp]: "\<And>x. c * max 0 (f x) = max 0 (c * f x)" using `0 \<le> c` by (auto split: split_max simp: ereal_zero_le_0_iff) have "(\<integral>\<^isup>+ x. c * f x \<partial>M) = (\<integral>\<^isup>+ x. c * max 0 (f x) \<partial>M)" by (simp add: positive_integral_max_0) then show ?thesis using positive_integral_linear[OF _ _ `0 \<le> c`, of "\<lambda>x. max 0 (f x)" "\<lambda>x. 0"] f by (auto simp: positive_integral_max_0) qed lemma (in measure_space) positive_integral_multc: assumes "f \<in> borel_measurable M" "AE x. 0 \<le> f x" "0 \<le> c" shows "(\<integral>\<^isup>+ x. f x * c \<partial>M) = integral\<^isup>P M f * c" unfolding mult_commute[of _ c] positive_integral_cmult[OF assms] by simp lemma (in measure_space) positive_integral_indicator[simp]: "A \<in> sets M \<Longrightarrow> (\<integral>\<^isup>+ x. indicator A x\<partial>M) = \<mu> A" by (subst positive_integral_eq_simple_integral) (auto simp: simple_function_indicator simple_integral_indicator) lemma (in measure_space) positive_integral_cmult_indicator: "0 \<le> c \<Longrightarrow> A \<in> sets M \<Longrightarrow> (\<integral>\<^isup>+ x. c * indicator A x \<partial>M) = c * \<mu> A" by (subst positive_integral_eq_simple_integral) (auto simp: simple_function_indicator simple_integral_indicator) lemma (in measure_space) positive_integral_add: assumes f: "f \<in> borel_measurable M" "AE x. 0 \<le> f x" and g: "g \<in> borel_measurable M" "AE x. 0 \<le> g x" shows "(\<integral>\<^isup>+ x. f x + g x \<partial>M) = integral\<^isup>P M f + integral\<^isup>P M g" proof - have ae: "AE x. max 0 (f x) + max 0 (g x) = max 0 (f x + g x)" using assms by (auto split: split_max simp: ereal_add_nonneg_nonneg) have "(\<integral>\<^isup>+ x. f x + g x \<partial>M) = (\<integral>\<^isup>+ x. max 0 (f x + g x) \<partial>M)" by (simp add: positive_integral_max_0) also have "\<dots> = (\<integral>\<^isup>+ x. max 0 (f x) + max 0 (g x) \<partial>M)" unfolding ae[THEN positive_integral_cong_AE] .. also have "\<dots> = (\<integral>\<^isup>+ x. max 0 (f x) \<partial>M) + (\<integral>\<^isup>+ x. max 0 (g x) \<partial>M)" using positive_integral_linear[of "\<lambda>x. max 0 (f x)" 1 "\<lambda>x. max 0 (g x)"] f g by auto finally show ?thesis by (simp add: positive_integral_max_0) qed lemma (in measure_space) positive_integral_setsum: assumes "\<And>i. i\<in>P \<Longrightarrow> f i \<in> borel_measurable M" "\<And>i. i\<in>P \<Longrightarrow> AE x. 0 \<le> f i x" shows "(\<integral>\<^isup>+ x. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^isup>P M (f i))" proof cases assume f: "finite P" from assms have "AE x. \<forall>i\<in>P. 0 \<le> f i x" unfolding AE_finite_all[OF f] by auto from f this assms(1) show ?thesis proof induct case (insert i P) then have "f i \<in> borel_measurable M" "AE x. 0 \<le> f i x" "(\<lambda>x. \<Sum>i\<in>P. f i x) \<in> borel_measurable M" "AE x. 0 \<le> (\<Sum>i\<in>P. f i x)" by (auto intro!: borel_measurable_ereal_setsum setsum_nonneg) from positive_integral_add[OF this] show ?case using insert by auto qed simp qed simp lemma (in measure_space) positive_integral_Markov_inequality: assumes u: "u \<in> borel_measurable M" "AE x. 0 \<le> u x" and "A \<in> sets M" and c: "0 \<le> c" "c \<noteq> \<infinity>" shows "\<mu> ({x\<in>space M. 1 \<le> c * u x} \<inter> A) \<le> c * (\<integral>\<^isup>+ x. u x * indicator A x \<partial>M)" (is "\<mu> ?A \<le> _ * ?PI") proof - have "?A \<in> sets M" using `A \<in> sets M` u by auto hence "\<mu> ?A = (\<integral>\<^isup>+ x. indicator ?A x \<partial>M)" using positive_integral_indicator by simp also have "\<dots> \<le> (\<integral>\<^isup>+ x. c * (u x * indicator A x) \<partial>M)" using u c by (auto intro!: positive_integral_mono_AE simp: indicator_def ereal_zero_le_0_iff) also have "\<dots> = c * (\<integral>\<^isup>+ x. u x * indicator A x \<partial>M)" using assms by (auto intro!: positive_integral_cmult borel_measurable_indicator simp: ereal_zero_le_0_iff) finally show ?thesis . qed lemma (in measure_space) positive_integral_noteq_infinite: assumes g: "g \<in> borel_measurable M" "AE x. 0 \<le> g x" and "integral\<^isup>P M g \<noteq> \<infinity>" shows "AE x. g x \<noteq> \<infinity>" proof (rule ccontr) assume c: "\<not> (AE x. g x \<noteq> \<infinity>)" have "\<mu> {x\<in>space M. g x = \<infinity>} \<noteq> 0" using c g by (simp add: AE_iff_null_set) moreover have "0 \<le> \<mu> {x\<in>space M. g x = \<infinity>}" using g by (auto intro: measurable_sets) ultimately have "0 < \<mu> {x\<in>space M. g x = \<infinity>}" by auto then have "\<infinity> = \<infinity> * \<mu> {x\<in>space M. g x = \<infinity>}" by auto also have "\<dots> \<le> (\<integral>\<^isup>+x. \<infinity> * indicator {x\<in>space M. g x = \<infinity>} x \<partial>M)" using g by (subst positive_integral_cmult_indicator) auto also have "\<dots> \<le> integral\<^isup>P M g" using assms by (auto intro!: positive_integral_mono_AE simp: indicator_def) finally show False using `integral\<^isup>P M g \<noteq> \<infinity>` by auto qed lemma (in measure_space) positive_integral_diff: assumes f: "f \<in> borel_measurable M" and g: "g \<in> borel_measurable M" "AE x. 0 \<le> g x" and fin: "integral\<^isup>P M g \<noteq> \<infinity>" and mono: "AE x. g x \<le> f x" shows "(\<integral>\<^isup>+ x. f x - g x \<partial>M) = integral\<^isup>P M f - integral\<^isup>P M g" proof - have diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M" "AE x. 0 \<le> f x - g x" using assms by (auto intro: ereal_diff_positive) have pos_f: "AE x. 0 \<le> f x" using mono g by auto { fix a b :: ereal assume "0 \<le> a" "a \<noteq> \<infinity>" "0 \<le> b" "a \<le> b" then have "b - a + a = b" by (cases rule: ereal2_cases[of a b]) auto } note * = this then have "AE x. f x = f x - g x + g x" using mono positive_integral_noteq_infinite[OF g fin] assms by auto then have **: "integral\<^isup>P M f = (\<integral>\<^isup>+x. f x - g x \<partial>M) + integral\<^isup>P M g" unfolding positive_integral_add[OF diff g, symmetric] by (rule positive_integral_cong_AE) show ?thesis unfolding ** using fin positive_integral_positive[of g] by (cases rule: ereal2_cases[of "\<integral>\<^isup>+ x. f x - g x \<partial>M" "integral\<^isup>P M g"]) auto qed lemma (in measure_space) positive_integral_suminf: assumes f: "\<And>i. f i \<in> borel_measurable M" "\<And>i. AE x. 0 \<le> f i x" shows "(\<integral>\<^isup>+ x. (\<Sum>i. f i x) \<partial>M) = (\<Sum>i. integral\<^isup>P M (f i))" proof - have all_pos: "AE x. \<forall>i. 0 \<le> f i x" using assms by (auto simp: AE_all_countable) have "(\<Sum>i. integral\<^isup>P M (f i)) = (SUP n. \<Sum>i<n. integral\<^isup>P M (f i))" using positive_integral_positive by (rule suminf_ereal_eq_SUPR) also have "\<dots> = (SUP n. \<integral>\<^isup>+x. (\<Sum>i<n. f i x) \<partial>M)" unfolding positive_integral_setsum[OF f] .. also have "\<dots> = \<integral>\<^isup>+x. (SUP n. \<Sum>i<n. f i x) \<partial>M" using f all_pos by (intro positive_integral_monotone_convergence_SUP_AE[symmetric]) (elim AE_mp, auto simp: setsum_nonneg simp del: setsum_lessThan_Suc intro!: AE_I2 setsum_mono3) also have "\<dots> = \<integral>\<^isup>+x. (\<Sum>i. f i x) \<partial>M" using all_pos by (intro positive_integral_cong_AE) (auto simp: suminf_ereal_eq_SUPR) finally show ?thesis by simp qed text {* Fatou's lemma: convergence theorem on limes inferior *} lemma (in measure_space) positive_integral_lim_INF: fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ereal" assumes u: "\<And>i. u i \<in> borel_measurable M" "\<And>i. AE x. 0 \<le> u i x" shows "(\<integral>\<^isup>+ x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^isup>P M (u n))" proof - have pos: "AE x. \<forall>i. 0 \<le> u i x" using u by (auto simp: AE_all_countable) have "(\<integral>\<^isup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (SUP n. \<integral>\<^isup>+ x. (INF i:{n..}. u i x) \<partial>M)" unfolding liminf_SUPR_INFI using pos u by (intro positive_integral_monotone_convergence_SUP_AE) (elim AE_mp, auto intro!: AE_I2 intro: INF_greatest INF_superset_mono) also have "\<dots> \<le> liminf (\<lambda>n. integral\<^isup>P M (u n))" unfolding liminf_SUPR_INFI by (auto intro!: SUP_mono exI INF_greatest positive_integral_mono INF_lower) finally show ?thesis . qed lemma (in measure_space) measure_space_density: assumes u: "u \<in> borel_measurable M" "AE x. 0 \<le> u x" and M'[simp]: "M' = (M\<lparr>measure := \<lambda>A. (\<integral>\<^isup>+ x. u x * indicator A x \<partial>M)\<rparr>)" shows "measure_space M'" proof - interpret M': sigma_algebra M' by (intro sigma_algebra_cong) auto show ?thesis proof have pos: "\<And>A. AE x. 0 \<le> u x * indicator A x" using u by (auto simp: ereal_zero_le_0_iff) then show "positive M' (measure M')" unfolding M' using u(1) by (auto simp: positive_def intro!: positive_integral_positive) show "countably_additive M' (measure M')" proof (intro countably_additiveI) fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> sets M'" then have *: "\<And>i. (\<lambda>x. u x * indicator (A i) x) \<in> borel_measurable M" using u by (auto intro: borel_measurable_indicator) assume disj: "disjoint_family A" have "(\<Sum>n. measure M' (A n)) = (\<integral>\<^isup>+ x. (\<Sum>n. u x * indicator (A n) x) \<partial>M)" unfolding M' using u(1) * by (simp add: positive_integral_suminf[OF _ pos, symmetric]) also have "\<dots> = (\<integral>\<^isup>+ x. u x * (\<Sum>n. indicator (A n) x) \<partial>M)" using u by (intro positive_integral_cong_AE) (elim AE_mp, auto intro!: AE_I2 suminf_cmult_ereal) also have "\<dots> = (\<integral>\<^isup>+ x. u x * indicator (\<Union>n. A n) x \<partial>M)" unfolding suminf_indicator[OF disj] .. finally show "(\<Sum>n. measure M' (A n)) = measure M' (\<Union>x. A x)" unfolding M' by simp qed qed qed lemma (in measure_space) positive_integral_null_set: assumes "N \<in> null_sets" shows "(\<integral>\<^isup>+ x. u x * indicator N x \<partial>M) = 0" proof - have "(\<integral>\<^isup>+ x. u x * indicator N x \<partial>M) = (\<integral>\<^isup>+ x. 0 \<partial>M)" proof (intro positive_integral_cong_AE AE_I) show "{x \<in> space M. u x * indicator N x \<noteq> 0} \<subseteq> N" by (auto simp: indicator_def) show "\<mu> N = 0" "N \<in> sets M" using assms by auto qed then show ?thesis by simp qed lemma (in measure_space) positive_integral_translated_density: assumes f: "f \<in> borel_measurable M" "AE x. 0 \<le> f x" assumes g: "g \<in> borel_measurable M" "AE x. 0 \<le> g x" and M': "M' = (M\<lparr> measure := \<lambda>A. (\<integral>\<^isup>+ x. f x * indicator A x \<partial>M)\<rparr>)" shows "integral\<^isup>P M' g = (\<integral>\<^isup>+ x. f x * g x \<partial>M)" proof - from measure_space_density[OF f M'] interpret T: measure_space M' . have borel[simp]: "borel_measurable M' = borel_measurable M" "simple_function M' = simple_function M" unfolding measurable_def simple_function_def_raw by (auto simp: M') from borel_measurable_implies_simple_function_sequence'[OF g(1)] guess G . note G = this note G' = borel_measurable_simple_function[OF this(1)] simple_functionD[OF G(1)] note G'(2)[simp] { fix P have "AE x. P x \<Longrightarrow> AE x in M'. P x" using positive_integral_null_set[of _ f] unfolding T.almost_everywhere_def almost_everywhere_def by (auto simp: M') } note ac = this from G(4) g(2) have G_M': "AE x in M'. (SUP i. G i x) = g x" by (auto intro!: ac split: split_max) { fix i let "?I y x" = "indicator (G i -` {y} \<inter> space M) x" { fix x assume *: "x \<in> space M" "0 \<le> f x" "0 \<le> g x" then have [simp]: "G i ` space M \<inter> {y. G i x = y \<and> x \<in> space M} = {G i x}" by auto from * G' G have "(\<Sum>y\<in>G i`space M. y * (f x * ?I y x)) = f x * (\<Sum>y\<in>G i`space M. (y * ?I y x))" by (subst setsum_ereal_right_distrib) (auto simp: ac_simps) also have "\<dots> = f x * G i x" by (simp add: indicator_def if_distrib setsum_cases) finally have "(\<Sum>y\<in>G i`space M. y * (f x * ?I y x)) = f x * G i x" . } note to_singleton = this have "integral\<^isup>P M' (G i) = integral\<^isup>S M' (G i)" using G T.positive_integral_eq_simple_integral by simp also have "\<dots> = (\<Sum>y\<in>G i`space M. y * (\<integral>\<^isup>+x. f x * ?I y x \<partial>M))" unfolding simple_integral_def M' by simp also have "\<dots> = (\<Sum>y\<in>G i`space M. (\<integral>\<^isup>+x. y * (f x * ?I y x) \<partial>M))" using f G' G by (auto intro!: setsum_cong positive_integral_cmult[symmetric]) also have "\<dots> = (\<integral>\<^isup>+x. (\<Sum>y\<in>G i`space M. y * (f x * ?I y x)) \<partial>M)" using f G' G by (auto intro!: positive_integral_setsum[symmetric]) finally have "integral\<^isup>P M' (G i) = (\<integral>\<^isup>+x. f x * G i x \<partial>M)" using f g G' to_singleton by (auto intro!: positive_integral_cong_AE) } note [simp] = this have "integral\<^isup>P M' g = (SUP i. integral\<^isup>P M' (G i))" using G'(1) G_M'(1) G using T.positive_integral_monotone_convergence_SUP[symmetric, OF `incseq G`] by (simp cong: T.positive_integral_cong_AE) also have "\<dots> = (SUP i. (\<integral>\<^isup>+x. f x * G i x \<partial>M))" by simp also have "\<dots> = (\<integral>\<^isup>+x. (SUP i. f x * G i x) \<partial>M)" using f G' G(2)[THEN incseq_SucD] G by (intro positive_integral_monotone_convergence_SUP_AE[symmetric]) (auto simp: ereal_mult_left_mono le_fun_def ereal_zero_le_0_iff) also have "\<dots> = (\<integral>\<^isup>+x. f x * g x \<partial>M)" using f G' G g by (intro positive_integral_cong_AE) (auto simp add: SUPR_ereal_cmult split: split_max) finally show "integral\<^isup>P M' g = (\<integral>\<^isup>+x. f x * g x \<partial>M)" . qed lemma (in measure_space) positive_integral_0_iff: assumes u: "u \<in> borel_measurable M" and pos: "AE x. 0 \<le> u x" shows "integral\<^isup>P M u = 0 \<longleftrightarrow> \<mu> {x\<in>space M. u x \<noteq> 0} = 0" (is "_ \<longleftrightarrow> \<mu> ?A = 0") proof - have u_eq: "(\<integral>\<^isup>+ x. u x * indicator ?A x \<partial>M) = integral\<^isup>P M u" by (auto intro!: positive_integral_cong simp: indicator_def) show ?thesis proof assume "\<mu> ?A = 0" with positive_integral_null_set[of ?A u] u show "integral\<^isup>P M u = 0" by (simp add: u_eq) next { fix r :: ereal and n :: nat assume gt_1: "1 \<le> real n * r" then have "0 < real n * r" by (cases r) (auto split: split_if_asm simp: one_ereal_def) then have "0 \<le> r" by (auto simp add: ereal_zero_less_0_iff) } note gt_1 = this assume *: "integral\<^isup>P M u = 0" let "?M n" = "{x \<in> space M. 1 \<le> real (n::nat) * u x}" have "0 = (SUP n. \<mu> (?M n \<inter> ?A))" proof - { fix n :: nat from positive_integral_Markov_inequality[OF u pos, of ?A "ereal (real n)"] have "\<mu> (?M n \<inter> ?A) \<le> 0" unfolding u_eq * using u by simp moreover have "0 \<le> \<mu> (?M n \<inter> ?A)" using u by auto ultimately have "\<mu> (?M n \<inter> ?A) = 0" by auto } thus ?thesis by simp qed also have "\<dots> = \<mu> (\<Union>n. ?M n \<inter> ?A)" proof (safe intro!: continuity_from_below) fix n show "?M n \<inter> ?A \<in> sets M" using u by (auto intro!: Int) next show "incseq (\<lambda>n. {x \<in> space M. 1 \<le> real n * u x} \<inter> {x \<in> space M. u x \<noteq> 0})" proof (safe intro!: incseq_SucI) fix n :: nat and x assume *: "1 \<le> real n * u x" also from gt_1[OF this] have "real n * u x \<le> real (Suc n) * u x" using `0 \<le> u x` by (auto intro!: ereal_mult_right_mono) finally show "1 \<le> real (Suc n) * u x" by auto qed qed also have "\<dots> = \<mu> {x\<in>space M. 0 < u x}" proof (safe intro!: arg_cong[where f="\<mu>"] dest!: gt_1) fix x assume "0 < u x" and [simp, intro]: "x \<in> space M" show "x \<in> (\<Union>n. ?M n \<inter> ?A)" proof (cases "u x") case (real r) with `0 < u x` have "0 < r" by auto obtain j :: nat where "1 / r \<le> real j" using real_arch_simple .. hence "1 / r * r \<le> real j * r" unfolding mult_le_cancel_right using `0 < r` by auto hence "1 \<le> real j * r" using real `0 < r` by auto thus ?thesis using `0 < r` real by (auto simp: one_ereal_def) qed (insert `0 < u x`, auto) qed auto finally have "\<mu> {x\<in>space M. 0 < u x} = 0" by simp moreover from pos have "AE x. \<not> (u x < 0)" by auto then have "\<mu> {x\<in>space M. u x < 0} = 0" using AE_iff_null_set u by auto moreover have "\<mu> {x\<in>space M. u x \<noteq> 0} = \<mu> {x\<in>space M. u x < 0} + \<mu> {x\<in>space M. 0 < u x}" using u by (subst measure_additive) (auto intro!: arg_cong[where f=\<mu>]) ultimately show "\<mu> ?A = 0" by simp qed qed lemma (in measure_space) positive_integral_0_iff_AE: assumes u: "u \<in> borel_measurable M" shows "integral\<^isup>P M u = 0 \<longleftrightarrow> (AE x. u x \<le> 0)" proof - have sets: "{x\<in>space M. max 0 (u x) \<noteq> 0} \<in> sets M" using u by auto from positive_integral_0_iff[of "\<lambda>x. max 0 (u x)"] have "integral\<^isup>P M u = 0 \<longleftrightarrow> (AE x. max 0 (u x) = 0)" unfolding positive_integral_max_0 using AE_iff_null_set[OF sets] u by auto also have "\<dots> \<longleftrightarrow> (AE x. u x \<le> 0)" by (auto split: split_max) finally show ?thesis . qed lemma (in measure_space) positive_integral_const_If: "(\<integral>\<^isup>+x. a \<partial>M) = (if 0 \<le> a then a * \<mu> (space M) else 0)" by (auto intro!: positive_integral_0_iff_AE[THEN iffD2]) lemma (in measure_space) positive_integral_restricted: assumes A: "A \<in> sets M" shows "integral\<^isup>P (restricted_space A) f = (\<integral>\<^isup>+ x. f x * indicator A x \<partial>M)" (is "integral\<^isup>P ?R f = integral\<^isup>P M ?f") proof - interpret R: measure_space ?R by (rule restricted_measure_space) fact let "?I g x" = "g x * indicator A x :: ereal" show ?thesis unfolding positive_integral_def unfolding simple_function_restricted[OF A] unfolding AE_restricted[OF A] proof (safe intro!: SUPR_eq) fix g assume g: "simple_function M (?I g)" and le: "g \<le> max 0 \<circ> f" show "\<exists>j\<in>{g. simple_function M g \<and> g \<le> max 0 \<circ> ?I f}. integral\<^isup>S (restricted_space A) g \<le> integral\<^isup>S M j" proof (safe intro!: bexI[of _ "?I g"]) show "integral\<^isup>S (restricted_space A) g \<le> integral\<^isup>S M (?I g)" using g A by (simp add: simple_integral_restricted) show "?I g \<le> max 0 \<circ> ?I f" using le by (auto simp: le_fun_def max_def indicator_def split: split_if_asm) qed fact next fix g assume g: "simple_function M g" and le: "g \<le> max 0 \<circ> ?I f" show "\<exists>i\<in>{g. simple_function M (?I g) \<and> g \<le> max 0 \<circ> f}. integral\<^isup>S M g \<le> integral\<^isup>S (restricted_space A) i" proof (safe intro!: bexI[of _ "?I g"]) show "?I g \<le> max 0 \<circ> f" using le by (auto simp: le_fun_def max_def indicator_def split: split_if_asm) from le have "\<And>x. g x \<le> ?I (?I g) x" by (auto simp: le_fun_def max_def indicator_def split: split_if_asm) then show "integral\<^isup>S M g \<le> integral\<^isup>S (restricted_space A) (?I g)" using A g by (auto intro!: simple_integral_mono simp: simple_integral_restricted) show "simple_function M (?I (?I g))" using g A by auto qed qed qed lemma (in measure_space) positive_integral_subalgebra: assumes f: "f \<in> borel_measurable N" "AE x in N. 0 \<le> f x" and N: "sets N \<subseteq> sets M" "space N = space M" "\<And>A. A \<in> sets N \<Longrightarrow> measure N A = \<mu> A" and sa: "sigma_algebra N" shows "integral\<^isup>P N f = integral\<^isup>P M f" proof - interpret N: measure_space N using measure_space_subalgebra[OF sa N] . from N.borel_measurable_implies_simple_function_sequence'[OF f(1)] guess fs . note fs = this note sf = simple_function_subalgebra[OF fs(1) N(1,2)] from N.positive_integral_monotone_convergence_simple[OF fs(2,5,1), symmetric] have "integral\<^isup>P N f = (SUP i. \<Sum>x\<in>fs i ` space M. x * N.\<mu> (fs i -` {x} \<inter> space M))" unfolding fs(4) positive_integral_max_0 unfolding simple_integral_def `space N = space M` by simp also have "\<dots> = (SUP i. \<Sum>x\<in>fs i ` space M. x * \<mu> (fs i -` {x} \<inter> space M))" using N N.simple_functionD(2)[OF fs(1)] unfolding `space N = space M` by auto also have "\<dots> = integral\<^isup>P M f" using positive_integral_monotone_convergence_simple[OF fs(2,5) sf, symmetric] unfolding fs(4) positive_integral_max_0 unfolding simple_integral_def `space N = space M` by simp finally show ?thesis . qed section "Lebesgue Integral" definition integrable where "integrable M f \<longleftrightarrow> f \<in> borel_measurable M \<and> (\<integral>\<^isup>+ x. ereal (f x) \<partial>M) \<noteq> \<infinity> \<and> (\<integral>\<^isup>+ x. ereal (- f x) \<partial>M) \<noteq> \<infinity>" lemma integrableD[dest]: assumes "integrable M f" shows "f \<in> borel_measurable M" "(\<integral>\<^isup>+ x. ereal (f x) \<partial>M) \<noteq> \<infinity>" "(\<integral>\<^isup>+ x. ereal (- f x) \<partial>M) \<noteq> \<infinity>" using assms unfolding integrable_def by auto definition lebesgue_integral_def: "integral\<^isup>L M f = real ((\<integral>\<^isup>+ x. ereal (f x) \<partial>M)) - real ((\<integral>\<^isup>+ x. ereal (- f x) \<partial>M))" syntax "_lebesgue_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> ('a, 'b) measure_space_scheme \<Rightarrow> real" ("\<integral> _. _ \<partial>_" [60,61] 110) translations "\<integral> x. f \<partial>M" == "CONST integral\<^isup>L M (%x. f)" lemma (in measure_space) integrableE: assumes "integrable M f" obtains r q where "(\<integral>\<^isup>+x. ereal (f x)\<partial>M) = ereal r" "(\<integral>\<^isup>+x. ereal (-f x)\<partial>M) = ereal q" "f \<in> borel_measurable M" "integral\<^isup>L M f = r - q" using assms unfolding integrable_def lebesgue_integral_def using positive_integral_positive[of "\<lambda>x. ereal (f x)"] using positive_integral_positive[of "\<lambda>x. ereal (-f x)"] by (cases rule: ereal2_cases[of "(\<integral>\<^isup>+x. ereal (-f x)\<partial>M)" "(\<integral>\<^isup>+x. ereal (f x)\<partial>M)"]) auto lemma (in measure_space) integral_cong: assumes "\<And>x. x \<in> space M \<Longrightarrow> f x = g x" shows "integral\<^isup>L M f = integral\<^isup>L M g" using assms by (simp cong: positive_integral_cong add: lebesgue_integral_def) lemma (in measure_space) integral_cong_measure: assumes "\<And>A. A \<in> sets M \<Longrightarrow> measure N A = \<mu> A" "sets N = sets M" "space N = space M" shows "integral\<^isup>L N f = integral\<^isup>L M f" by (simp add: positive_integral_cong_measure[OF assms] lebesgue_integral_def) lemma (in measure_space) integrable_cong_measure: assumes "\<And>A. A \<in> sets M \<Longrightarrow> measure N A = \<mu> A" "sets N = sets M" "space N = space M" shows "integrable N f \<longleftrightarrow> integrable M f" using assms by (simp add: positive_integral_cong_measure[OF assms] integrable_def measurable_def) lemma (in measure_space) integral_cong_AE: assumes cong: "AE x. f x = g x" shows "integral\<^isup>L M f = integral\<^isup>L M g" proof - have *: "AE x. ereal (f x) = ereal (g x)" "AE x. ereal (- f x) = ereal (- g x)" using cong by auto show ?thesis unfolding *[THEN positive_integral_cong_AE] lebesgue_integral_def .. qed lemma (in measure_space) integrable_cong_AE: assumes borel: "f \<in> borel_measurable M" "g \<in> borel_measurable M" assumes "AE x. f x = g x" shows "integrable M f = integrable M g" proof - have "(\<integral>\<^isup>+ x. ereal (f x) \<partial>M) = (\<integral>\<^isup>+ x. ereal (g x) \<partial>M)" "(\<integral>\<^isup>+ x. ereal (- f x) \<partial>M) = (\<integral>\<^isup>+ x. ereal (- g x) \<partial>M)" using assms by (auto intro!: positive_integral_cong_AE) with assms show ?thesis by (auto simp: integrable_def) qed lemma (in measure_space) integrable_cong: "(\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> integrable M f \<longleftrightarrow> integrable M g" by (simp cong: positive_integral_cong measurable_cong add: integrable_def) lemma (in measure_space) integral_eq_positive_integral: assumes f: "\<And>x. 0 \<le> f x" shows "integral\<^isup>L M f = real (\<integral>\<^isup>+ x. ereal (f x) \<partial>M)" proof - { fix x have "max 0 (ereal (- f x)) = 0" using f[of x] by (simp split: split_max) } then have "0 = (\<integral>\<^isup>+ x. max 0 (ereal (- f x)) \<partial>M)" by simp also have "\<dots> = (\<integral>\<^isup>+ x. ereal (- f x) \<partial>M)" unfolding positive_integral_max_0 .. finally show ?thesis unfolding lebesgue_integral_def by simp qed lemma (in measure_space) integral_vimage: assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'" assumes f: "f \<in> borel_measurable M'" shows "integral\<^isup>L M' f = (\<integral>x. f (T x) \<partial>M)" proof - interpret T: measure_space M' by (rule measure_space_vimage[OF T]) from measurable_comp[OF measure_preservingD2[OF T(2)], of f borel] have borel: "(\<lambda>x. ereal (f x)) \<in> borel_measurable M'" "(\<lambda>x. ereal (- f x)) \<in> borel_measurable M'" and "(\<lambda>x. f (T x)) \<in> borel_measurable M" using f by (auto simp: comp_def) then show ?thesis using f unfolding lebesgue_integral_def integrable_def by (auto simp: borel[THEN positive_integral_vimage[OF T]]) qed lemma (in measure_space) integrable_vimage: assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'" assumes f: "integrable M' f" shows "integrable M (\<lambda>x. f (T x))" proof - interpret T: measure_space M' by (rule measure_space_vimage[OF T]) from measurable_comp[OF measure_preservingD2[OF T(2)], of f borel] have borel: "(\<lambda>x. ereal (f x)) \<in> borel_measurable M'" "(\<lambda>x. ereal (- f x)) \<in> borel_measurable M'" and "(\<lambda>x. f (T x)) \<in> borel_measurable M" using f by (auto simp: comp_def) then show ?thesis using f unfolding lebesgue_integral_def integrable_def by (auto simp: borel[THEN positive_integral_vimage[OF T]]) qed lemma (in measure_space) integral_translated_density: assumes f: "f \<in> borel_measurable M" "AE x. 0 \<le> f x" and g: "g \<in> borel_measurable M" and N: "space N = space M" "sets N = sets M" and density: "\<And>A. A \<in> sets M \<Longrightarrow> measure N A = (\<integral>\<^isup>+ x. f x * indicator A x \<partial>M)" (is "\<And>A. _ \<Longrightarrow> _ = ?d A") shows "integral\<^isup>L N g = (\<integral> x. f x * g x \<partial>M)" (is ?integral) and "integrable N g = integrable M (\<lambda>x. f x * g x)" (is ?integrable) proof - from f have ms: "measure_space (M\<lparr>measure := ?d\<rparr>)" by (intro measure_space_density[where u="\<lambda>x. ereal (f x)"]) auto from ms density N have "(\<integral>\<^isup>+ x. g x \<partial>N) = (\<integral>\<^isup>+ x. max 0 (ereal (g x)) \<partial>M\<lparr>measure := ?d\<rparr>)" unfolding positive_integral_max_0 by (intro measure_space.positive_integral_cong_measure) auto also have "\<dots> = (\<integral>\<^isup>+ x. ereal (f x) * max 0 (ereal (g x)) \<partial>M)" using f g by (intro positive_integral_translated_density) auto also have "\<dots> = (\<integral>\<^isup>+ x. max 0 (ereal (f x * g x)) \<partial>M)" using f by (intro positive_integral_cong_AE) (auto simp: ereal_max_0 zero_le_mult_iff split: split_max) finally have pos: "(\<integral>\<^isup>+ x. g x \<partial>N) = (\<integral>\<^isup>+ x. f x * g x \<partial>M)" by (simp add: positive_integral_max_0) from ms density N have "(\<integral>\<^isup>+ x. - (g x) \<partial>N) = (\<integral>\<^isup>+ x. max 0 (ereal (- g x)) \<partial>M\<lparr>measure := ?d\<rparr>)" unfolding positive_integral_max_0 by (intro measure_space.positive_integral_cong_measure) auto also have "\<dots> = (\<integral>\<^isup>+ x. ereal (f x) * max 0 (ereal (- g x)) \<partial>M)" using f g by (intro positive_integral_translated_density) auto also have "\<dots> = (\<integral>\<^isup>+ x. max 0 (ereal (- f x * g x)) \<partial>M)" using f by (intro positive_integral_cong_AE) (auto simp: ereal_max_0 mult_le_0_iff split: split_max) finally have neg: "(\<integral>\<^isup>+ x. - g x \<partial>N) = (\<integral>\<^isup>+ x. - (f x * g x) \<partial>M)" by (simp add: positive_integral_max_0) have g_N: "g \<in> borel_measurable N" using g N unfolding measurable_def by simp show ?integral ?integrable unfolding lebesgue_integral_def integrable_def using pos neg f g g_N by auto qed lemma (in measure_space) integral_minus[intro, simp]: assumes "integrable M f" shows "integrable M (\<lambda>x. - f x)" "(\<integral>x. - f x \<partial>M) = - integral\<^isup>L M f" using assms by (auto simp: integrable_def lebesgue_integral_def) lemma (in measure_space) integral_minus_iff[simp]: "integrable M (\<lambda>x. - f x) \<longleftrightarrow> integrable M f" proof assume "integrable M (\<lambda>x. - f x)" then have "integrable M (\<lambda>x. - (- f x))" by (rule integral_minus) then show "integrable M f" by simp qed (rule integral_minus) lemma (in measure_space) integral_of_positive_diff: assumes integrable: "integrable M u" "integrable M v" and f_def: "\<And>x. f x = u x - v x" and pos: "\<And>x. 0 \<le> u x" "\<And>x. 0 \<le> v x" shows "integrable M f" and "integral\<^isup>L M f = integral\<^isup>L M u - integral\<^isup>L M v" proof - let "?f x" = "max 0 (ereal (f x))" let "?mf x" = "max 0 (ereal (- f x))" let "?u x" = "max 0 (ereal (u x))" let "?v x" = "max 0 (ereal (v x))" from borel_measurable_diff[of u v] integrable have f_borel: "?f \<in> borel_measurable M" and mf_borel: "?mf \<in> borel_measurable M" and v_borel: "?v \<in> borel_measurable M" and u_borel: "?u \<in> borel_measurable M" and "f \<in> borel_measurable M" by (auto simp: f_def[symmetric] integrable_def) have "(\<integral>\<^isup>+ x. ereal (u x - v x) \<partial>M) \<le> integral\<^isup>P M ?u" using pos by (auto intro!: positive_integral_mono simp: positive_integral_max_0) moreover have "(\<integral>\<^isup>+ x. ereal (v x - u x) \<partial>M) \<le> integral\<^isup>P M ?v" using pos by (auto intro!: positive_integral_mono simp: positive_integral_max_0) ultimately show f: "integrable M f" using `integrable M u` `integrable M v` `f \<in> borel_measurable M` by (auto simp: integrable_def f_def positive_integral_max_0) have "\<And>x. ?u x + ?mf x = ?v x + ?f x" unfolding f_def using pos by (simp split: split_max) then have "(\<integral>\<^isup>+ x. ?u x + ?mf x \<partial>M) = (\<integral>\<^isup>+ x. ?v x + ?f x \<partial>M)" by simp then have "real (integral\<^isup>P M ?u + integral\<^isup>P M ?mf) = real (integral\<^isup>P M ?v + integral\<^isup>P M ?f)" using positive_integral_add[OF u_borel _ mf_borel] using positive_integral_add[OF v_borel _ f_borel] by auto then show "integral\<^isup>L M f = integral\<^isup>L M u - integral\<^isup>L M v" unfolding positive_integral_max_0 unfolding pos[THEN integral_eq_positive_integral] using integrable f by (auto elim!: integrableE) qed lemma (in measure_space) integral_linear: assumes "integrable M f" "integrable M g" and "0 \<le> a" shows "integrable M (\<lambda>t. a * f t + g t)" and "(\<integral> t. a * f t + g t \<partial>M) = a * integral\<^isup>L M f + integral\<^isup>L M g" (is ?EQ) proof - let "?f x" = "max 0 (ereal (f x))" let "?g x" = "max 0 (ereal (g x))" let "?mf x" = "max 0 (ereal (- f x))" let "?mg x" = "max 0 (ereal (- g x))" let "?p t" = "max 0 (a * f t) + max 0 (g t)" let "?n t" = "max 0 (- (a * f t)) + max 0 (- g t)" from assms have linear: "(\<integral>\<^isup>+ x. ereal a * ?f x + ?g x \<partial>M) = ereal a * integral\<^isup>P M ?f + integral\<^isup>P M ?g" "(\<integral>\<^isup>+ x. ereal a * ?mf x + ?mg x \<partial>M) = ereal a * integral\<^isup>P M ?mf + integral\<^isup>P M ?mg" by (auto intro!: positive_integral_linear simp: integrable_def) have *: "(\<integral>\<^isup>+x. ereal (- ?p x) \<partial>M) = 0" "(\<integral>\<^isup>+x. ereal (- ?n x) \<partial>M) = 0" using `0 \<le> a` assms by (auto simp: positive_integral_0_iff_AE integrable_def) have **: "\<And>x. ereal a * ?f x + ?g x = max 0 (ereal (?p x))" "\<And>x. ereal a * ?mf x + ?mg x = max 0 (ereal (?n x))" using `0 \<le> a` by (auto split: split_max simp: zero_le_mult_iff mult_le_0_iff) have "integrable M ?p" "integrable M ?n" "\<And>t. a * f t + g t = ?p t - ?n t" "\<And>t. 0 \<le> ?p t" "\<And>t. 0 \<le> ?n t" using linear assms unfolding integrable_def ** * by (auto simp: positive_integral_max_0) note diff = integral_of_positive_diff[OF this] show "integrable M (\<lambda>t. a * f t + g t)" by (rule diff) from assms linear show ?EQ unfolding diff(2) ** positive_integral_max_0 unfolding lebesgue_integral_def * by (auto elim!: integrableE simp: field_simps) qed lemma (in measure_space) integral_add[simp, intro]: assumes "integrable M f" "integrable M g" shows "integrable M (\<lambda>t. f t + g t)" and "(\<integral> t. f t + g t \<partial>M) = integral\<^isup>L M f + integral\<^isup>L M g" using assms integral_linear[where a=1] by auto lemma (in measure_space) integral_zero[simp, intro]: shows "integrable M (\<lambda>x. 0)" "(\<integral> x.0 \<partial>M) = 0" unfolding integrable_def lebesgue_integral_def by (auto simp add: borel_measurable_const) lemma (in measure_space) integral_cmult[simp, intro]: assumes "integrable M f" shows "integrable M (\<lambda>t. a * f t)" (is ?P) and "(\<integral> t. a * f t \<partial>M) = a * integral\<^isup>L M f" (is ?I) proof - have "integrable M (\<lambda>t. a * f t) \<and> (\<integral> t. a * f t \<partial>M) = a * integral\<^isup>L M f" proof (cases rule: le_cases) assume "0 \<le> a" show ?thesis using integral_linear[OF assms integral_zero(1) `0 \<le> a`] by (simp add: integral_zero) next assume "a \<le> 0" hence "0 \<le> - a" by auto have *: "\<And>t. - a * t + 0 = (-a) * t" by simp show ?thesis using integral_linear[OF assms integral_zero(1) `0 \<le> - a`] integral_minus(1)[of "\<lambda>t. - a * f t"] unfolding * integral_zero by simp qed thus ?P ?I by auto qed lemma (in measure_space) integral_multc: assumes "integrable M f" shows "(\<integral> x. f x * c \<partial>M) = integral\<^isup>L M f * c" unfolding mult_commute[of _ c] integral_cmult[OF assms] .. lemma (in measure_space) integral_mono_AE: assumes fg: "integrable M f" "integrable M g" and mono: "AE t. f t \<le> g t" shows "integral\<^isup>L M f \<le> integral\<^isup>L M g" proof - have "AE x. ereal (f x) \<le> ereal (g x)" using mono by auto moreover have "AE x. ereal (- g x) \<le> ereal (- f x)" using mono by auto ultimately show ?thesis using fg by (auto intro!: add_mono positive_integral_mono_AE real_of_ereal_positive_mono simp: positive_integral_positive lebesgue_integral_def diff_minus) qed lemma (in measure_space) integral_mono: assumes "integrable M f" "integrable M g" "\<And>t. t \<in> space M \<Longrightarrow> f t \<le> g t" shows "integral\<^isup>L M f \<le> integral\<^isup>L M g" using assms by (auto intro: integral_mono_AE) lemma (in measure_space) integral_diff[simp, intro]: assumes f: "integrable M f" and g: "integrable M g" shows "integrable M (\<lambda>t. f t - g t)" and "(\<integral> t. f t - g t \<partial>M) = integral\<^isup>L M f - integral\<^isup>L M g" using integral_add[OF f integral_minus(1)[OF g]] unfolding diff_minus integral_minus(2)[OF g] by auto lemma (in measure_space) integral_indicator[simp, intro]: assumes "A \<in> sets M" and "\<mu> A \<noteq> \<infinity>" shows "integral\<^isup>L M (indicator A) = real (\<mu> A)" (is ?int) and "integrable M (indicator A)" (is ?able) proof - from `A \<in> sets M` have *: "\<And>x. ereal (indicator A x) = indicator A x" "(\<integral>\<^isup>+x. ereal (- indicator A x) \<partial>M) = 0" by (auto split: split_indicator simp: positive_integral_0_iff_AE one_ereal_def) show ?int ?able using assms unfolding lebesgue_integral_def integrable_def by (auto simp: * positive_integral_indicator borel_measurable_indicator) qed lemma (in measure_space) integral_cmul_indicator: assumes "A \<in> sets M" and "c \<noteq> 0 \<Longrightarrow> \<mu> A \<noteq> \<infinity>" shows "integrable M (\<lambda>x. c * indicator A x)" (is ?P) and "(\<integral>x. c * indicator A x \<partial>M) = c * real (\<mu> A)" (is ?I) proof - show ?P proof (cases "c = 0") case False with assms show ?thesis by simp qed simp show ?I proof (cases "c = 0") case False with assms show ?thesis by simp qed simp qed lemma (in measure_space) integral_setsum[simp, intro]: assumes "\<And>n. n \<in> S \<Longrightarrow> integrable M (f n)" shows "(\<integral>x. (\<Sum> i \<in> S. f i x) \<partial>M) = (\<Sum> i \<in> S. integral\<^isup>L M (f i))" (is "?int S") and "integrable M (\<lambda>x. \<Sum> i \<in> S. f i x)" (is "?I S") proof - have "?int S \<and> ?I S" proof (cases "finite S") assume "finite S" from this assms show ?thesis by (induct S) simp_all qed simp thus "?int S" and "?I S" by auto qed lemma (in measure_space) integrable_abs: assumes "integrable M f" shows "integrable M (\<lambda> x. \<bar>f x\<bar>)" proof - from assms have *: "(\<integral>\<^isup>+x. ereal (- \<bar>f x\<bar>)\<partial>M) = 0" "\<And>x. ereal \<bar>f x\<bar> = max 0 (ereal (f x)) + max 0 (ereal (- f x))" by (auto simp: integrable_def positive_integral_0_iff_AE split: split_max) with assms show ?thesis by (simp add: positive_integral_add positive_integral_max_0 integrable_def) qed lemma (in measure_space) integral_subalgebra: assumes borel: "f \<in> borel_measurable N" and N: "sets N \<subseteq> sets M" "space N = space M" "\<And>A. A \<in> sets N \<Longrightarrow> measure N A = \<mu> A" and sa: "sigma_algebra N" shows "integrable N f \<longleftrightarrow> integrable M f" (is ?P) and "integral\<^isup>L N f = integral\<^isup>L M f" (is ?I) proof - interpret N: measure_space N using measure_space_subalgebra[OF sa N] . have "(\<integral>\<^isup>+ x. max 0 (ereal (f x)) \<partial>N) = (\<integral>\<^isup>+ x. max 0 (ereal (f x)) \<partial>M)" "(\<integral>\<^isup>+ x. max 0 (ereal (- f x)) \<partial>N) = (\<integral>\<^isup>+ x. max 0 (ereal (- f x)) \<partial>M)" using borel by (auto intro!: positive_integral_subalgebra N sa) moreover have "f \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable N" using assms unfolding measurable_def by auto ultimately show ?P ?I by (auto simp: integrable_def lebesgue_integral_def positive_integral_max_0) qed lemma (in measure_space) integrable_bound: assumes "integrable M f" and f: "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> f x" "\<And>x. x \<in> space M \<Longrightarrow> \<bar>g x\<bar> \<le> f x" assumes borel: "g \<in> borel_measurable M" shows "integrable M g" proof - have "(\<integral>\<^isup>+ x. ereal (g x) \<partial>M) \<le> (\<integral>\<^isup>+ x. ereal \<bar>g x\<bar> \<partial>M)" by (auto intro!: positive_integral_mono) also have "\<dots> \<le> (\<integral>\<^isup>+ x. ereal (f x) \<partial>M)" using f by (auto intro!: positive_integral_mono) also have "\<dots> < \<infinity>" using `integrable M f` unfolding integrable_def by auto finally have pos: "(\<integral>\<^isup>+ x. ereal (g x) \<partial>M) < \<infinity>" . have "(\<integral>\<^isup>+ x. ereal (- g x) \<partial>M) \<le> (\<integral>\<^isup>+ x. ereal (\<bar>g x\<bar>) \<partial>M)" by (auto intro!: positive_integral_mono) also have "\<dots> \<le> (\<integral>\<^isup>+ x. ereal (f x) \<partial>M)" using f by (auto intro!: positive_integral_mono) also have "\<dots> < \<infinity>" using `integrable M f` unfolding integrable_def by auto finally have neg: "(\<integral>\<^isup>+ x. ereal (- g x) \<partial>M) < \<infinity>" . from neg pos borel show ?thesis unfolding integrable_def by auto qed lemma (in measure_space) integrable_abs_iff: "f \<in> borel_measurable M \<Longrightarrow> integrable M (\<lambda> x. \<bar>f x\<bar>) \<longleftrightarrow> integrable M f" by (auto intro!: integrable_bound[where g=f] integrable_abs) lemma (in measure_space) integrable_max: assumes int: "integrable M f" "integrable M g" shows "integrable M (\<lambda> x. max (f x) (g x))" proof (rule integrable_bound) show "integrable M (\<lambda>x. \<bar>f x\<bar> + \<bar>g x\<bar>)" using int by (simp add: integrable_abs) show "(\<lambda>x. max (f x) (g x)) \<in> borel_measurable M" using int unfolding integrable_def by auto next fix x assume "x \<in> space M" show "0 \<le> \<bar>f x\<bar> + \<bar>g x\<bar>" "\<bar>max (f x) (g x)\<bar> \<le> \<bar>f x\<bar> + \<bar>g x\<bar>" by auto qed lemma (in measure_space) integrable_min: assumes int: "integrable M f" "integrable M g" shows "integrable M (\<lambda> x. min (f x) (g x))" proof (rule integrable_bound) show "integrable M (\<lambda>x. \<bar>f x\<bar> + \<bar>g x\<bar>)" using int by (simp add: integrable_abs) show "(\<lambda>x. min (f x) (g x)) \<in> borel_measurable M" using int unfolding integrable_def by auto next fix x assume "x \<in> space M" show "0 \<le> \<bar>f x\<bar> + \<bar>g x\<bar>" "\<bar>min (f x) (g x)\<bar> \<le> \<bar>f x\<bar> + \<bar>g x\<bar>" by auto qed lemma (in measure_space) integral_triangle_inequality: assumes "integrable M f" shows "\<bar>integral\<^isup>L M f\<bar> \<le> (\<integral>x. \<bar>f x\<bar> \<partial>M)" proof - have "\<bar>integral\<^isup>L M f\<bar> = max (integral\<^isup>L M f) (- integral\<^isup>L M f)" by auto also have "\<dots> \<le> (\<integral>x. \<bar>f x\<bar> \<partial>M)" using assms integral_minus(2)[of f, symmetric] by (auto intro!: integral_mono integrable_abs simp del: integral_minus) finally show ?thesis . qed lemma (in measure_space) integral_positive: assumes "integrable M f" "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> f x" shows "0 \<le> integral\<^isup>L M f" proof - have "0 = (\<integral>x. 0 \<partial>M)" by (auto simp: integral_zero) also have "\<dots> \<le> integral\<^isup>L M f" using assms by (rule integral_mono[OF integral_zero(1)]) finally show ?thesis . qed lemma (in measure_space) integral_monotone_convergence_pos: assumes i: "\<And>i. integrable M (f i)" and mono: "\<And>x. mono (\<lambda>n. f n x)" and pos: "\<And>x i. 0 \<le> f i x" and lim: "\<And>x. (\<lambda>i. f i x) ----> u x" and ilim: "(\<lambda>i. integral\<^isup>L M (f i)) ----> x" shows "integrable M u" and "integral\<^isup>L M u = x" proof - { fix x have "0 \<le> u x" using mono pos[of 0 x] incseq_le[OF _ lim, of x 0] by (simp add: mono_def incseq_def) } note pos_u = this have SUP_F: "\<And>x. (SUP n. ereal (f n x)) = ereal (u x)" unfolding SUP_eq_LIMSEQ[OF mono] by (rule lim) have borel_f: "\<And>i. (\<lambda>x. ereal (f i x)) \<in> borel_measurable M" using i unfolding integrable_def by auto hence "(\<lambda>x. SUP i. ereal (f i x)) \<in> borel_measurable M" by auto hence borel_u: "u \<in> borel_measurable M" by (auto simp: borel_measurable_ereal_iff SUP_F) hence [simp]: "\<And>i. (\<integral>\<^isup>+x. ereal (- f i x) \<partial>M) = 0" "(\<integral>\<^isup>+x. ereal (- u x) \<partial>M) = 0" using i borel_u pos pos_u by (auto simp: positive_integral_0_iff_AE integrable_def) have integral_eq: "\<And>n. (\<integral>\<^isup>+ x. ereal (f n x) \<partial>M) = ereal (integral\<^isup>L M (f n))" using i positive_integral_positive by (auto simp: ereal_real lebesgue_integral_def integrable_def) have pos_integral: "\<And>n. 0 \<le> integral\<^isup>L M (f n)" using pos i by (auto simp: integral_positive) hence "0 \<le> x" using LIMSEQ_le_const[OF ilim, of 0] by auto from mono pos i have pI: "(\<integral>\<^isup>+ x. ereal (u x) \<partial>M) = (SUP n. (\<integral>\<^isup>+ x. ereal (f n x) \<partial>M))" by (auto intro!: positive_integral_monotone_convergence_SUP simp: integrable_def incseq_mono incseq_Suc_iff le_fun_def SUP_F[symmetric]) also have "\<dots> = ereal x" unfolding integral_eq proof (rule SUP_eq_LIMSEQ[THEN iffD2]) show "mono (\<lambda>n. integral\<^isup>L M (f n))" using mono i by (auto simp: mono_def intro!: integral_mono) show "(\<lambda>n. integral\<^isup>L M (f n)) ----> x" using ilim . qed finally show "integrable M u" "integral\<^isup>L M u = x" using borel_u `0 \<le> x` unfolding integrable_def lebesgue_integral_def by auto qed lemma (in measure_space) integral_monotone_convergence: assumes f: "\<And>i. integrable M (f i)" and "mono f" and lim: "\<And>x. (\<lambda>i. f i x) ----> u x" and ilim: "(\<lambda>i. integral\<^isup>L M (f i)) ----> x" shows "integrable M u" and "integral\<^isup>L M u = x" proof - have 1: "\<And>i. integrable M (\<lambda>x. f i x - f 0 x)" using f by (auto intro!: integral_diff) have 2: "\<And>x. mono (\<lambda>n. f n x - f 0 x)" using `mono f` unfolding mono_def le_fun_def by auto have 3: "\<And>x n. 0 \<le> f n x - f 0 x" using `mono f` unfolding mono_def le_fun_def by (auto simp: field_simps) have 4: "\<And>x. (\<lambda>i. f i x - f 0 x) ----> u x - f 0 x" using lim by (auto intro!: tendsto_diff) have 5: "(\<lambda>i. (\<integral>x. f i x - f 0 x \<partial>M)) ----> x - integral\<^isup>L M (f 0)" using f ilim by (auto intro!: tendsto_diff simp: integral_diff) note diff = integral_monotone_convergence_pos[OF 1 2 3 4 5] have "integrable M (\<lambda>x. (u x - f 0 x) + f 0 x)" using diff(1) f by (rule integral_add(1)) with diff(2) f show "integrable M u" "integral\<^isup>L M u = x" by (auto simp: integral_diff) qed lemma (in measure_space) integral_0_iff: assumes "integrable M f" shows "(\<integral>x. \<bar>f x\<bar> \<partial>M) = 0 \<longleftrightarrow> \<mu> {x\<in>space M. f x \<noteq> 0} = 0" proof - have *: "(\<integral>\<^isup>+x. ereal (- \<bar>f x\<bar>) \<partial>M) = 0" using assms by (auto simp: positive_integral_0_iff_AE integrable_def) have "integrable M (\<lambda>x. \<bar>f x\<bar>)" using assms by (rule integrable_abs) hence "(\<lambda>x. ereal (\<bar>f x\<bar>)) \<in> borel_measurable M" "(\<integral>\<^isup>+ x. ereal \<bar>f x\<bar> \<partial>M) \<noteq> \<infinity>" unfolding integrable_def by auto from positive_integral_0_iff[OF this(1)] this(2) show ?thesis unfolding lebesgue_integral_def * using positive_integral_positive[of "\<lambda>x. ereal \<bar>f x\<bar>"] by (auto simp add: real_of_ereal_eq_0) qed lemma (in measure_space) positive_integral_PInf: assumes f: "f \<in> borel_measurable M" and not_Inf: "integral\<^isup>P M f \<noteq> \<infinity>" shows "\<mu> (f -` {\<infinity>} \<inter> space M) = 0" proof - have "\<infinity> * \<mu> (f -` {\<infinity>} \<inter> space M) = (\<integral>\<^isup>+ x. \<infinity> * indicator (f -` {\<infinity>} \<inter> space M) x \<partial>M)" using f by (subst positive_integral_cmult_indicator) (auto simp: measurable_sets) also have "\<dots> \<le> integral\<^isup>P M (\<lambda>x. max 0 (f x))" by (auto intro!: positive_integral_mono simp: indicator_def max_def) finally have "\<infinity> * \<mu> (f -` {\<infinity>} \<inter> space M) \<le> integral\<^isup>P M f" by (simp add: positive_integral_max_0) moreover have "0 \<le> \<mu> (f -` {\<infinity>} \<inter> space M)" using f by (simp add: measurable_sets) ultimately show ?thesis using assms by (auto split: split_if_asm) qed lemma (in measure_space) positive_integral_PInf_AE: assumes "f \<in> borel_measurable M" "integral\<^isup>P M f \<noteq> \<infinity>" shows "AE x. f x \<noteq> \<infinity>" proof (rule AE_I) show "\<mu> (f -` {\<infinity>} \<inter> space M) = 0" by (rule positive_integral_PInf[OF assms]) show "f -` {\<infinity>} \<inter> space M \<in> sets M" using assms by (auto intro: borel_measurable_vimage) qed auto lemma (in measure_space) simple_integral_PInf: assumes "simple_function M f" "\<And>x. 0 \<le> f x" and "integral\<^isup>S M f \<noteq> \<infinity>" shows "\<mu> (f -` {\<infinity>} \<inter> space M) = 0" proof (rule positive_integral_PInf) show "f \<in> borel_measurable M" using assms by (auto intro: borel_measurable_simple_function) show "integral\<^isup>P M f \<noteq> \<infinity>" using assms by (simp add: positive_integral_eq_simple_integral) qed lemma (in measure_space) integral_real: "AE x. \<bar>f x\<bar> \<noteq> \<infinity> \<Longrightarrow> (\<integral>x. real (f x) \<partial>M) = real (integral\<^isup>P M f) - real (integral\<^isup>P M (\<lambda>x. - f x))" using assms unfolding lebesgue_integral_def by (subst (1 2) positive_integral_cong_AE) (auto simp add: ereal_real) lemma (in finite_measure) lebesgue_integral_const[simp]: shows "integrable M (\<lambda>x. a)" and "(\<integral>x. a \<partial>M) = a * \<mu>' (space M)" proof - { fix a :: real assume "0 \<le> a" then have "(\<integral>\<^isup>+ x. ereal a \<partial>M) = ereal a * \<mu> (space M)" by (subst positive_integral_const) auto moreover from `0 \<le> a` have "(\<integral>\<^isup>+ x. ereal (-a) \<partial>M) = 0" by (subst positive_integral_0_iff_AE) auto ultimately have "integrable M (\<lambda>x. a)" by (auto simp: integrable_def) } note * = this show "integrable M (\<lambda>x. a)" proof cases assume "0 \<le> a" with * show ?thesis . next assume "\<not> 0 \<le> a" then have "0 \<le> -a" by auto from *[OF this] show ?thesis by simp qed show "(\<integral>x. a \<partial>M) = a * \<mu>' (space M)" by (simp add: \<mu>'_def lebesgue_integral_def positive_integral_const_If) qed lemma indicator_less[simp]: "indicator A x \<le> (indicator B x::ereal) \<longleftrightarrow> (x \<in> A \<longrightarrow> x \<in> B)" by (simp add: indicator_def not_le) lemma (in finite_measure) integral_less_AE: assumes int: "integrable M X" "integrable M Y" assumes A: "\<mu> A \<noteq> 0" "A \<in> sets M" "AE x. x \<in> A \<longrightarrow> X x \<noteq> Y x" assumes gt: "AE x. X x \<le> Y x" shows "integral\<^isup>L M X < integral\<^isup>L M Y" proof - have "integral\<^isup>L M X \<le> integral\<^isup>L M Y" using gt int by (intro integral_mono_AE) auto moreover have "integral\<^isup>L M X \<noteq> integral\<^isup>L M Y" proof assume eq: "integral\<^isup>L M X = integral\<^isup>L M Y" have "integral\<^isup>L M (\<lambda>x. \<bar>Y x - X x\<bar>) = integral\<^isup>L M (\<lambda>x. Y x - X x)" using gt by (intro integral_cong_AE) auto also have "\<dots> = 0" using eq int by simp finally have "\<mu> {x \<in> space M. Y x - X x \<noteq> 0} = 0" using int by (simp add: integral_0_iff) moreover have "(\<integral>\<^isup>+x. indicator A x \<partial>M) \<le> (\<integral>\<^isup>+x. indicator {x \<in> space M. Y x - X x \<noteq> 0} x \<partial>M)" using A by (intro positive_integral_mono_AE) auto then have "\<mu> A \<le> \<mu> {x \<in> space M. Y x - X x \<noteq> 0}" using int A by (simp add: integrable_def) moreover note `\<mu> A \<noteq> 0` positive_measure[OF `A \<in> sets M`] ultimately show False by auto qed ultimately show ?thesis by auto qed lemma (in finite_measure) integral_less_AE_space: assumes int: "integrable M X" "integrable M Y" assumes gt: "AE x. X x < Y x" "\<mu> (space M) \<noteq> 0" shows "integral\<^isup>L M X < integral\<^isup>L M Y" using gt by (intro integral_less_AE[OF int, where A="space M"]) auto lemma (in measure_space) integral_dominated_convergence: assumes u: "\<And>i. integrable M (u i)" and bound: "\<And>x j. x\<in>space M \<Longrightarrow> \<bar>u j x\<bar> \<le> w x" and w: "integrable M w" and u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) ----> u' x" shows "integrable M u'" and "(\<lambda>i. (\<integral>x. \<bar>u i x - u' x\<bar> \<partial>M)) ----> 0" (is "?lim_diff") and "(\<lambda>i. integral\<^isup>L M (u i)) ----> integral\<^isup>L M u'" (is ?lim) proof - { fix x j assume x: "x \<in> space M" from u'[OF x] have "(\<lambda>i. \<bar>u i x\<bar>) ----> \<bar>u' x\<bar>" by (rule tendsto_rabs) from LIMSEQ_le_const2[OF this] have "\<bar>u' x\<bar> \<le> w x" using bound[OF x] by auto } note u'_bound = this from u[unfolded integrable_def] have u'_borel: "u' \<in> borel_measurable M" using u' by (blast intro: borel_measurable_LIMSEQ[of u]) { fix x assume x: "x \<in> space M" then have "0 \<le> \<bar>u 0 x\<bar>" by auto also have "\<dots> \<le> w x" using bound[OF x] by auto finally have "0 \<le> w x" . } note w_pos = this show "integrable M u'" proof (rule integrable_bound) show "integrable M w" by fact show "u' \<in> borel_measurable M" by fact next fix x assume x: "x \<in> space M" then show "0 \<le> w x" by fact show "\<bar>u' x\<bar> \<le> w x" using u'_bound[OF x] . qed let "?diff n x" = "2 * w x - \<bar>u n x - u' x\<bar>" have diff: "\<And>n. integrable M (\<lambda>x. \<bar>u n x - u' x\<bar>)" using w u `integrable M u'` by (auto intro!: integral_add integral_diff integral_cmult integrable_abs) { fix j x assume x: "x \<in> space M" have "\<bar>u j x - u' x\<bar> \<le> \<bar>u j x\<bar> + \<bar>u' x\<bar>" by auto also have "\<dots> \<le> w x + w x" by (rule add_mono[OF bound[OF x] u'_bound[OF x]]) finally have "\<bar>u j x - u' x\<bar> \<le> 2 * w x" by simp } note diff_less_2w = this have PI_diff: "\<And>n. (\<integral>\<^isup>+ x. ereal (?diff n x) \<partial>M) = (\<integral>\<^isup>+ x. ereal (2 * w x) \<partial>M) - (\<integral>\<^isup>+ x. ereal \<bar>u n x - u' x\<bar> \<partial>M)" using diff w diff_less_2w w_pos by (subst positive_integral_diff[symmetric]) (auto simp: integrable_def intro!: positive_integral_cong) have "integrable M (\<lambda>x. 2 * w x)" using w by (auto intro: integral_cmult) hence I2w_fin: "(\<integral>\<^isup>+ x. ereal (2 * w x) \<partial>M) \<noteq> \<infinity>" and borel_2w: "(\<lambda>x. ereal (2 * w x)) \<in> borel_measurable M" unfolding integrable_def by auto have "limsup (\<lambda>n. \<integral>\<^isup>+ x. ereal \<bar>u n x - u' x\<bar> \<partial>M) = 0" (is "limsup ?f = 0") proof cases assume eq_0: "(\<integral>\<^isup>+ x. max 0 (ereal (2 * w x)) \<partial>M) = 0" (is "?wx = 0") { fix n have "?f n \<le> ?wx" (is "integral\<^isup>P M ?f' \<le> _") using diff_less_2w[of _ n] unfolding positive_integral_max_0 by (intro positive_integral_mono) auto then have "?f n = 0" using positive_integral_positive[of ?f'] eq_0 by auto } then show ?thesis by (simp add: Limsup_const) next assume neq_0: "(\<integral>\<^isup>+ x. max 0 (ereal (2 * w x)) \<partial>M) \<noteq> 0" (is "?wx \<noteq> 0") have "0 = limsup (\<lambda>n. 0 :: ereal)" by (simp add: Limsup_const) also have "\<dots> \<le> limsup (\<lambda>n. \<integral>\<^isup>+ x. ereal \<bar>u n x - u' x\<bar> \<partial>M)" by (intro limsup_mono positive_integral_positive) finally have pos: "0 \<le> limsup (\<lambda>n. \<integral>\<^isup>+ x. ereal \<bar>u n x - u' x\<bar> \<partial>M)" . have "?wx = (\<integral>\<^isup>+ x. liminf (\<lambda>n. max 0 (ereal (?diff n x))) \<partial>M)" proof (rule positive_integral_cong) fix x assume x: "x \<in> space M" show "max 0 (ereal (2 * w x)) = liminf (\<lambda>n. max 0 (ereal (?diff n x)))" unfolding ereal_max_0 proof (rule lim_imp_Liminf[symmetric], unfold lim_ereal) have "(\<lambda>i. ?diff i x) ----> 2 * w x - \<bar>u' x - u' x\<bar>" using u'[OF x] by (safe intro!: tendsto_intros) then show "(\<lambda>i. max 0 (?diff i x)) ----> max 0 (2 * w x)" by (auto intro!: tendsto_real_max simp add: lim_ereal) qed (rule trivial_limit_sequentially) qed also have "\<dots> \<le> liminf (\<lambda>n. \<integral>\<^isup>+ x. max 0 (ereal (?diff n x)) \<partial>M)" using u'_borel w u unfolding integrable_def by (intro positive_integral_lim_INF) (auto intro!: positive_integral_lim_INF) also have "\<dots> = (\<integral>\<^isup>+ x. ereal (2 * w x) \<partial>M) - limsup (\<lambda>n. \<integral>\<^isup>+ x. ereal \<bar>u n x - u' x\<bar> \<partial>M)" unfolding PI_diff positive_integral_max_0 using positive_integral_positive[of "\<lambda>x. ereal (2 * w x)"] by (subst liminf_ereal_cminus) auto finally show ?thesis using neq_0 I2w_fin positive_integral_positive[of "\<lambda>x. ereal (2 * w x)"] pos unfolding positive_integral_max_0 by (cases rule: ereal2_cases[of "\<integral>\<^isup>+ x. ereal (2 * w x) \<partial>M" "limsup (\<lambda>n. \<integral>\<^isup>+ x. ereal \<bar>u n x - u' x\<bar> \<partial>M)"]) auto qed have "liminf ?f \<le> limsup ?f" by (intro ereal_Liminf_le_Limsup trivial_limit_sequentially) moreover { have "0 = liminf (\<lambda>n. 0 :: ereal)" by (simp add: Liminf_const) also have "\<dots> \<le> liminf ?f" by (intro liminf_mono positive_integral_positive) finally have "0 \<le> liminf ?f" . } ultimately have liminf_limsup_eq: "liminf ?f = ereal 0" "limsup ?f = ereal 0" using `limsup ?f = 0` by auto have "\<And>n. (\<integral>\<^isup>+ x. ereal \<bar>u n x - u' x\<bar> \<partial>M) = ereal (\<integral>x. \<bar>u n x - u' x\<bar> \<partial>M)" using diff positive_integral_positive by (subst integral_eq_positive_integral) (auto simp: ereal_real integrable_def) then show ?lim_diff using ereal_Liminf_eq_Limsup[OF trivial_limit_sequentially liminf_limsup_eq] by (simp add: lim_ereal) show ?lim proof (rule LIMSEQ_I) fix r :: real assume "0 < r" from LIMSEQ_D[OF `?lim_diff` this] obtain N where N: "\<And>n. N \<le> n \<Longrightarrow> (\<integral>x. \<bar>u n x - u' x\<bar> \<partial>M) < r" using diff by (auto simp: integral_positive) show "\<exists>N. \<forall>n\<ge>N. norm (integral\<^isup>L M (u n) - integral\<^isup>L M u') < r" proof (safe intro!: exI[of _ N]) fix n assume "N \<le> n" have "\<bar>integral\<^isup>L M (u n) - integral\<^isup>L M u'\<bar> = \<bar>(\<integral>x. u n x - u' x \<partial>M)\<bar>" using u `integrable M u'` by (auto simp: integral_diff) also have "\<dots> \<le> (\<integral>x. \<bar>u n x - u' x\<bar> \<partial>M)" using u `integrable M u'` by (rule_tac integral_triangle_inequality) (auto intro!: integral_diff) also note N[OF `N \<le> n`] finally show "norm (integral\<^isup>L M (u n) - integral\<^isup>L M u') < r" by simp qed qed qed lemma (in measure_space) integral_sums: assumes borel: "\<And>i. integrable M (f i)" and summable: "\<And>x. x \<in> space M \<Longrightarrow> summable (\<lambda>i. \<bar>f i x\<bar>)" and sums: "summable (\<lambda>i. (\<integral>x. \<bar>f i x\<bar> \<partial>M))" shows "integrable M (\<lambda>x. (\<Sum>i. f i x))" (is "integrable M ?S") and "(\<lambda>i. integral\<^isup>L M (f i)) sums (\<integral>x. (\<Sum>i. f i x) \<partial>M)" (is ?integral) proof - have "\<forall>x\<in>space M. \<exists>w. (\<lambda>i. \<bar>f i x\<bar>) sums w" using summable unfolding summable_def by auto from bchoice[OF this] obtain w where w: "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. \<bar>f i x\<bar>) sums w x" by auto let "?w y" = "if y \<in> space M then w y else 0" obtain x where abs_sum: "(\<lambda>i. (\<integral>x. \<bar>f i x\<bar> \<partial>M)) sums x" using sums unfolding summable_def .. have 1: "\<And>n. integrable M (\<lambda>x. \<Sum>i = 0..<n. f i x)" using borel by (auto intro!: integral_setsum) { fix j x assume [simp]: "x \<in> space M" have "\<bar>\<Sum>i = 0..< j. f i x\<bar> \<le> (\<Sum>i = 0..< j. \<bar>f i x\<bar>)" by (rule setsum_abs) also have "\<dots> \<le> w x" using w[of x] series_pos_le[of "\<lambda>i. \<bar>f i x\<bar>"] unfolding sums_iff by auto finally have "\<bar>\<Sum>i = 0..<j. f i x\<bar> \<le> ?w x" by simp } note 2 = this have 3: "integrable M ?w" proof (rule integral_monotone_convergence(1)) let "?F n y" = "(\<Sum>i = 0..<n. \<bar>f i y\<bar>)" let "?w' n y" = "if y \<in> space M then ?F n y else 0" have "\<And>n. integrable M (?F n)" using borel by (auto intro!: integral_setsum integrable_abs) thus "\<And>n. integrable M (?w' n)" by (simp cong: integrable_cong) show "mono ?w'" by (auto simp: mono_def le_fun_def intro!: setsum_mono2) { fix x show "(\<lambda>n. ?w' n x) ----> ?w x" using w by (cases "x \<in> space M") (simp_all add: tendsto_const sums_def) } have *: "\<And>n. integral\<^isup>L M (?w' n) = (\<Sum>i = 0..< n. (\<integral>x. \<bar>f i x\<bar> \<partial>M))" using borel by (simp add: integral_setsum integrable_abs cong: integral_cong) from abs_sum show "(\<lambda>i. integral\<^isup>L M (?w' i)) ----> x" unfolding * sums_def . qed from summable[THEN summable_rabs_cancel] have 4: "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>n. \<Sum>i = 0..<n. f i x) ----> (\<Sum>i. f i x)" by (auto intro: summable_sumr_LIMSEQ_suminf) note int = integral_dominated_convergence(1,3)[OF 1 2 3 4] from int show "integrable M ?S" by simp show ?integral unfolding sums_def integral_setsum(1)[symmetric, OF borel] using int(2) by simp qed section "Lebesgue integration on countable spaces" lemma (in measure_space) integral_on_countable: assumes f: "f \<in> borel_measurable M" and bij: "bij_betw enum S (f ` space M)" and enum_zero: "enum ` (-S) \<subseteq> {0}" and fin: "\<And>x. x \<noteq> 0 \<Longrightarrow> \<mu> (f -` {x} \<inter> space M) \<noteq> \<infinity>" and abs_summable: "summable (\<lambda>r. \<bar>enum r * real (\<mu> (f -` {enum r} \<inter> space M))\<bar>)" shows "integrable M f" and "(\<lambda>r. enum r * real (\<mu> (f -` {enum r} \<inter> space M))) sums integral\<^isup>L M f" (is ?sums) proof - let "?A r" = "f -` {enum r} \<inter> space M" let "?F r x" = "enum r * indicator (?A r) x" have enum_eq: "\<And>r. enum r * real (\<mu> (?A r)) = integral\<^isup>L M (?F r)" using f fin by (simp add: borel_measurable_vimage integral_cmul_indicator) { fix x assume "x \<in> space M" hence "f x \<in> enum ` S" using bij unfolding bij_betw_def by auto then obtain i where "i\<in>S" "enum i = f x" by auto have F: "\<And>j. ?F j x = (if j = i then f x else 0)" proof cases fix j assume "j = i" thus "?thesis j" using `x \<in> space M` `enum i = f x` by (simp add: indicator_def) next fix j assume "j \<noteq> i" show "?thesis j" using bij `i \<in> S` `j \<noteq> i` `enum i = f x` enum_zero by (cases "j \<in> S") (auto simp add: indicator_def bij_betw_def inj_on_def) qed hence F_abs: "\<And>j. \<bar>if j = i then f x else 0\<bar> = (if j = i then \<bar>f x\<bar> else 0)" by auto have "(\<lambda>i. ?F i x) sums f x" "(\<lambda>i. \<bar>?F i x\<bar>) sums \<bar>f x\<bar>" by (auto intro!: sums_single simp: F F_abs) } note F_sums_f = this(1) and F_abs_sums_f = this(2) have int_f: "integral\<^isup>L M f = (\<integral>x. (\<Sum>r. ?F r x) \<partial>M)" "integrable M f = integrable M (\<lambda>x. \<Sum>r. ?F r x)" using F_sums_f by (auto intro!: integral_cong integrable_cong simp: sums_iff) { fix r have "(\<integral>x. \<bar>?F r x\<bar> \<partial>M) = (\<integral>x. \<bar>enum r\<bar> * indicator (?A r) x \<partial>M)" by (auto simp: indicator_def intro!: integral_cong) also have "\<dots> = \<bar>enum r\<bar> * real (\<mu> (?A r))" using f fin by (simp add: borel_measurable_vimage integral_cmul_indicator) finally have "(\<integral>x. \<bar>?F r x\<bar> \<partial>M) = \<bar>enum r * real (\<mu> (?A r))\<bar>" using f by (subst (2) abs_mult_pos[symmetric]) (auto intro!: real_of_ereal_pos measurable_sets) } note int_abs_F = this have 1: "\<And>i. integrable M (\<lambda>x. ?F i x)" using f fin by (simp add: borel_measurable_vimage integral_cmul_indicator) have 2: "\<And>x. x \<in> space M \<Longrightarrow> summable (\<lambda>i. \<bar>?F i x\<bar>)" using F_abs_sums_f unfolding sums_iff by auto from integral_sums(2)[OF 1 2, unfolded int_abs_F, OF _ abs_summable] show ?sums unfolding enum_eq int_f by simp from integral_sums(1)[OF 1 2, unfolded int_abs_F, OF _ abs_summable] show "integrable M f" unfolding int_f by simp qed section "Lebesgue integration on finite space" lemma (in measure_space) integral_on_finite: assumes f: "f \<in> borel_measurable M" and finite: "finite (f`space M)" and fin: "\<And>x. x \<noteq> 0 \<Longrightarrow> \<mu> (f -` {x} \<inter> space M) \<noteq> \<infinity>" shows "integrable M f" and "(\<integral>x. f x \<partial>M) = (\<Sum> r \<in> f`space M. r * real (\<mu> (f -` {r} \<inter> space M)))" (is "?integral") proof - let "?A r" = "f -` {r} \<inter> space M" let "?S x" = "\<Sum>r\<in>f`space M. r * indicator (?A r) x" { fix x assume "x \<in> space M" have "f x = (\<Sum>r\<in>f`space M. if x \<in> ?A r then r else 0)" using finite `x \<in> space M` by (simp add: setsum_cases) also have "\<dots> = ?S x" by (auto intro!: setsum_cong) finally have "f x = ?S x" . } note f_eq = this have f_eq_S: "integrable M f \<longleftrightarrow> integrable M ?S" "integral\<^isup>L M f = integral\<^isup>L M ?S" by (auto intro!: integrable_cong integral_cong simp only: f_eq) show "integrable M f" ?integral using fin f f_eq_S by (simp_all add: integral_cmul_indicator borel_measurable_vimage) qed lemma (in finite_measure_space) simple_function_finite[simp, intro]: "simple_function M f" unfolding simple_function_def using finite_space by auto lemma (in finite_measure_space) borel_measurable_finite[intro, simp]: "f \<in> borel_measurable M" by (auto intro: borel_measurable_simple_function) lemma (in finite_measure_space) positive_integral_finite_eq_setsum: assumes pos: "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> f x" shows "integral\<^isup>P M f = (\<Sum>x \<in> space M. f x * \<mu> {x})" proof - have *: "integral\<^isup>P M f = (\<integral>\<^isup>+ x. (\<Sum>y\<in>space M. f y * indicator {y} x) \<partial>M)" by (auto intro!: positive_integral_cong simp add: indicator_def if_distrib setsum_cases[OF finite_space]) show ?thesis unfolding * using borel_measurable_finite[of f] pos by (simp add: positive_integral_setsum positive_integral_cmult_indicator) qed lemma (in finite_measure_space) integral_finite_singleton: shows "integrable M f" and "integral\<^isup>L M f = (\<Sum>x \<in> space M. f x * real (\<mu> {x}))" (is ?I) proof - have *: "(\<integral>\<^isup>+ x. max 0 (ereal (f x)) \<partial>M) = (\<Sum>x \<in> space M. max 0 (ereal (f x)) * \<mu> {x})" "(\<integral>\<^isup>+ x. max 0 (ereal (- f x)) \<partial>M) = (\<Sum>x \<in> space M. max 0 (ereal (- f x)) * \<mu> {x})" by (simp_all add: positive_integral_finite_eq_setsum) then show "integrable M f" using finite_space finite_measure by (simp add: setsum_Pinfty integrable_def positive_integral_max_0 split: split_max) show ?I using finite_measure * apply (simp add: positive_integral_max_0 lebesgue_integral_def) apply (subst (1 2) setsum_real_of_ereal[symmetric]) apply (simp_all split: split_max add: setsum_subtractf[symmetric]) apply (intro setsum_cong[OF refl]) apply (simp split: split_max) done qed end