| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46664 | 1f6c140f9c72 |
| child 46975 | c54ca5717f73 |
| permissions | -rw-r--r-- |
(* Author: Florian Haftmann & Lukas Bulwahn, TU Muenchen *) header {* A simple counterexample generator performing random testing *} theory Quickcheck imports Random Code_Evaluation Enum uses ("Tools/Quickcheck/quickcheck_common.ML") ("Tools/Quickcheck/random_generators.ML") begin notation fcomp (infixl "\<circ>>" 60) notation scomp (infixl "\<circ>\<rightarrow>" 60) setup {* Code_Target.extend_target ("Quickcheck", (Code_Runtime.target, K I)) *} subsection {* Catching Match exceptions *} axiomatization catch_match :: "'a => 'a => 'a" code_const catch_match (Quickcheck "(_) handle Match => _") subsection {* The @{text random} class *} class random = typerep + fixes random :: "code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed" subsection {* Fundamental and numeric types*} instantiation bool :: random begin definition "random i = Random.range 2 \<circ>\<rightarrow> (\<lambda>k. Pair (if k = 0 then Code_Evaluation.valtermify False else Code_Evaluation.valtermify True))" instance .. end instantiation itself :: (typerep) random begin definition random_itself :: "code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a itself \<times> (unit \<Rightarrow> term)) \<times> Random.seed" where "random_itself _ = Pair (Code_Evaluation.valtermify TYPE('a))" instance .. end instantiation char :: random begin definition "random _ = Random.select chars \<circ>\<rightarrow> (\<lambda>c. Pair (c, \<lambda>u. Code_Evaluation.term_of c))" instance .. end instantiation String.literal :: random begin definition "random _ = Pair (STR '''', \<lambda>u. Code_Evaluation.term_of (STR ''''))" instance .. end instantiation nat :: random begin definition random_nat :: "code_numeral \<Rightarrow> Random.seed \<Rightarrow> (nat \<times> (unit \<Rightarrow> Code_Evaluation.term)) \<times> Random.seed" where "random_nat i = Random.range (i + 1) \<circ>\<rightarrow> (\<lambda>k. Pair ( let n = Code_Numeral.nat_of k in (n, \<lambda>_. Code_Evaluation.term_of n)))" instance .. end instantiation int :: random begin definition "random i = Random.range (2 * i + 1) \<circ>\<rightarrow> (\<lambda>k. Pair ( let j = (if k \<ge> i then Code_Numeral.int_of (k - i) else - Code_Numeral.int_of (i - k)) in (j, \<lambda>_. Code_Evaluation.term_of j)))" instance .. end subsection {* Complex generators *} text {* Towards @{typ "'a \<Rightarrow> 'b"} *} axiomatization random_fun_aux :: "typerep \<Rightarrow> typerep \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> term) \<Rightarrow> (Random.seed \<Rightarrow> ('b \<times> (unit \<Rightarrow> term)) \<times> Random.seed) \<Rightarrow> (Random.seed \<Rightarrow> Random.seed \<times> Random.seed) \<Rightarrow> Random.seed \<Rightarrow> (('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term)) \<times> Random.seed" definition random_fun_lift :: "(Random.seed \<Rightarrow> ('b \<times> (unit \<Rightarrow> term)) \<times> Random.seed) \<Rightarrow> Random.seed \<Rightarrow> (('a\<Colon>term_of \<Rightarrow> 'b\<Colon>typerep) \<times> (unit \<Rightarrow> term)) \<times> Random.seed" where "random_fun_lift f = random_fun_aux TYPEREP('a) TYPEREP('b) (op =) Code_Evaluation.term_of f Random.split_seed" instantiation "fun" :: ("{equal, term_of}", random) random begin definition random_fun :: "code_numeral \<Rightarrow> Random.seed \<Rightarrow> (('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term)) \<times> Random.seed" where "random i = random_fun_lift (random i)" instance .. end text {* Towards type copies and datatypes *} definition collapse :: "('a \<Rightarrow> ('a \<Rightarrow> 'b \<times> 'a) \<times> 'a) \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a" where "collapse f = (f \<circ>\<rightarrow> id)" definition beyond :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where "beyond k l = (if l > k then l else 0)" lemma beyond_zero: "beyond k 0 = 0" by (simp add: beyond_def) definition (in term_syntax) [code_unfold]: "valterm_emptyset = Code_Evaluation.valtermify ({} :: ('a :: typerep) set)" definition (in term_syntax) [code_unfold]: "valtermify_insert x s = Code_Evaluation.valtermify insert {\<cdot>} (x :: ('a :: typerep * _)) {\<cdot>} s" instantiation set :: (random) random begin primrec random_aux_set where "random_aux_set 0 j = collapse (Random.select_weight [(1, Pair valterm_emptyset)])" | "random_aux_set (Code_Numeral.Suc i) j = collapse (Random.select_weight [(1, Pair valterm_emptyset), (Code_Numeral.Suc i, random j \<circ>\<rightarrow> (%x. random_aux_set i j \<circ>\<rightarrow> (%s. Pair (valtermify_insert x s))))])" lemma [code]: "random_aux_set i j = collapse (Random.select_weight [(1, Pair valterm_emptyset), (i, random j \<circ>\<rightarrow> (%x. random_aux_set (i - 1) j \<circ>\<rightarrow> (%s. Pair (valtermify_insert x s))))])" proof (induct i rule: code_numeral.induct) print_cases case zero show ?case by (subst select_weight_drop_zero[symmetric]) (simp add: filter.simps random_aux_set.simps[simplified]) next case (Suc i) show ?case by (simp only: random_aux_set.simps(2)[of "i"] Suc_code_numeral_minus_one) qed definition random_set where "random_set i = random_aux_set i i" instance .. end lemma random_aux_rec: fixes random_aux :: "code_numeral \<Rightarrow> 'a" assumes "random_aux 0 = rhs 0" and "\<And>k. random_aux (Code_Numeral.Suc k) = rhs (Code_Numeral.Suc k)" shows "random_aux k = rhs k" using assms by (rule code_numeral.induct) subsection {* Deriving random generators for datatypes *} use "Tools/Quickcheck/quickcheck_common.ML" use "Tools/Quickcheck/random_generators.ML" setup Random_Generators.setup subsection {* Code setup *} code_const random_fun_aux (Quickcheck "Random'_Generators.random'_fun") -- {* With enough criminal energy this can be abused to derive @{prop False}; for this reason we use a distinguished target @{text Quickcheck} not spoiling the regular trusted code generation *} code_reserved Quickcheck Random_Generators no_notation fcomp (infixl "\<circ>>" 60) no_notation scomp (infixl "\<circ>\<rightarrow>" 60) subsection {* The Random-Predicate Monad *} fun iter' :: "'a itself => code_numeral => code_numeral => code_numeral * code_numeral => ('a::random) Predicate.pred" where "iter' T nrandom sz seed = (if nrandom = 0 then bot_class.bot else let ((x, _), seed') = random sz seed in Predicate.Seq (%u. Predicate.Insert x (iter' T (nrandom - 1) sz seed')))" definition iter :: "code_numeral => code_numeral => code_numeral * code_numeral => ('a::random) Predicate.pred" where "iter nrandom sz seed = iter' (TYPE('a)) nrandom sz seed" lemma [code]: "iter nrandom sz seed = (if nrandom = 0 then bot_class.bot else let ((x, _), seed') = random sz seed in Predicate.Seq (%u. Predicate.Insert x (iter (nrandom - 1) sz seed')))" unfolding iter_def iter'.simps[of _ nrandom] .. type_synonym 'a randompred = "Random.seed \<Rightarrow> ('a Predicate.pred \<times> Random.seed)" definition empty :: "'a randompred" where "empty = Pair (bot_class.bot)" definition single :: "'a => 'a randompred" where "single x = Pair (Predicate.single x)" definition bind :: "'a randompred \<Rightarrow> ('a \<Rightarrow> 'b randompred) \<Rightarrow> 'b randompred" where "bind R f = (\<lambda>s. let (P, s') = R s; (s1, s2) = Random.split_seed s' in (Predicate.bind P (%a. fst (f a s1)), s2))" definition union :: "'a randompred \<Rightarrow> 'a randompred \<Rightarrow> 'a randompred" where "union R1 R2 = (\<lambda>s. let (P1, s') = R1 s; (P2, s'') = R2 s' in (sup_class.sup P1 P2, s''))" definition if_randompred :: "bool \<Rightarrow> unit randompred" where "if_randompred b = (if b then single () else empty)" definition iterate_upto :: "(code_numeral => 'a) => code_numeral => code_numeral => 'a randompred" where "iterate_upto f n m = Pair (Predicate.iterate_upto f n m)" definition not_randompred :: "unit randompred \<Rightarrow> unit randompred" where "not_randompred P = (\<lambda>s. let (P', s') = P s in if Predicate.eval P' () then (Orderings.bot, s') else (Predicate.single (), s'))" definition Random :: "(Random.seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> Random.seed) \<Rightarrow> 'a randompred" where "Random g = scomp g (Pair o (Predicate.single o fst))" definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a randompred \<Rightarrow> 'b randompred)" where "map f P = bind P (single o f)" hide_fact random_bool_def random_bool_def_raw random_itself_def random_itself_def_raw random_char_def random_char_def_raw random_literal_def random_literal_def_raw random_nat_def random_nat_def_raw random_int_def random_int_def_raw random_fun_lift_def random_fun_lift_def_raw random_fun_def random_fun_def_raw collapse_def collapse_def_raw beyond_def beyond_def_raw beyond_zero random_aux_rec hide_const (open) catch_match random collapse beyond random_fun_aux random_fun_lift hide_fact (open) iter'.simps iter_def empty_def single_def bind_def union_def if_randompred_def iterate_upto_def not_randompred_def Random_def map_def hide_type (open) randompred hide_const (open) iter' iter empty single bind union if_randompred iterate_upto not_randompred Random map end