| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46311 | 56fae81902ce |
| child 51143 | 0a2371e7ced3 |
| permissions | -rw-r--r-- |
(* Author: Florian Haftmann, TU Muenchen *) header {* A HOL random engine *} theory Random imports Code_Numeral List begin notation fcomp (infixl "\<circ>>" 60) notation scomp (infixl "\<circ>\<rightarrow>" 60) subsection {* Auxiliary functions *} fun log :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where "log b i = (if b \<le> 1 \<or> i < b then 1 else 1 + log b (i div b))" definition inc_shift :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where "inc_shift v k = (if v = k then 1 else k + 1)" definition minus_shift :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where "minus_shift r k l = (if k < l then r + k - l else k - l)" subsection {* Random seeds *} type_synonym seed = "code_numeral \<times> code_numeral" primrec "next" :: "seed \<Rightarrow> code_numeral \<times> seed" where "next (v, w) = (let k = v div 53668; v' = minus_shift 2147483563 ((v mod 53668) * 40014) (k * 12211); l = w div 52774; w' = minus_shift 2147483399 ((w mod 52774) * 40692) (l * 3791); z = minus_shift 2147483562 v' (w' + 1) + 1 in (z, (v', w')))" definition split_seed :: "seed \<Rightarrow> seed \<times> seed" where "split_seed s = (let (v, w) = s; (v', w') = snd (next s); v'' = inc_shift 2147483562 v; w'' = inc_shift 2147483398 w in ((v'', w'), (v', w'')))" subsection {* Base selectors *} fun iterate :: "code_numeral \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a" where "iterate k f x = (if k = 0 then Pair x else f x \<circ>\<rightarrow> iterate (k - 1) f)" definition range :: "code_numeral \<Rightarrow> seed \<Rightarrow> code_numeral \<times> seed" where "range k = iterate (log 2147483561 k) (\<lambda>l. next \<circ>\<rightarrow> (\<lambda>v. Pair (v + l * 2147483561))) 1 \<circ>\<rightarrow> (\<lambda>v. Pair (v mod k))" lemma range: "k > 0 \<Longrightarrow> fst (range k s) < k" by (simp add: range_def split_def del: log.simps iterate.simps) definition select :: "'a list \<Rightarrow> seed \<Rightarrow> 'a \<times> seed" where "select xs = range (Code_Numeral.of_nat (length xs)) \<circ>\<rightarrow> (\<lambda>k. Pair (nth xs (Code_Numeral.nat_of k)))" lemma select: assumes "xs \<noteq> []" shows "fst (select xs s) \<in> set xs" proof - from assms have "Code_Numeral.of_nat (length xs) > 0" by simp with range have "fst (range (Code_Numeral.of_nat (length xs)) s) < Code_Numeral.of_nat (length xs)" by best then have "Code_Numeral.nat_of (fst (range (Code_Numeral.of_nat (length xs)) s)) < length xs" by simp then show ?thesis by (simp add: split_beta select_def) qed primrec pick :: "(code_numeral \<times> 'a) list \<Rightarrow> code_numeral \<Rightarrow> 'a" where "pick (x # xs) i = (if i < fst x then snd x else pick xs (i - fst x))" lemma pick_member: "i < listsum (map fst xs) \<Longrightarrow> pick xs i \<in> set (map snd xs)" by (induct xs arbitrary: i) simp_all lemma pick_drop_zero: "pick (filter (\<lambda>(k, _). k > 0) xs) = pick xs" by (induct xs) (auto simp add: fun_eq_iff) lemma pick_same: "l < length xs \<Longrightarrow> Random.pick (map (Pair 1) xs) (Code_Numeral.of_nat l) = nth xs l" proof (induct xs arbitrary: l) case Nil then show ?case by simp next case (Cons x xs) then show ?case by (cases l) simp_all qed definition select_weight :: "(code_numeral \<times> 'a) list \<Rightarrow> seed \<Rightarrow> 'a \<times> seed" where "select_weight xs = range (listsum (map fst xs)) \<circ>\<rightarrow> (\<lambda>k. Pair (pick xs k))" lemma select_weight_member: assumes "0 < listsum (map fst xs)" shows "fst (select_weight xs s) \<in> set (map snd xs)" proof - from range assms have "fst (range (listsum (map fst xs)) s) < listsum (map fst xs)" . with pick_member have "pick xs (fst (range (listsum (map fst xs)) s)) \<in> set (map snd xs)" . then show ?thesis by (simp add: select_weight_def scomp_def split_def) qed lemma select_weight_cons_zero: "select_weight ((0, x) # xs) = select_weight xs" by (simp add: select_weight_def) lemma select_weight_drop_zero: "select_weight (filter (\<lambda>(k, _). k > 0) xs) = select_weight xs" proof - have "listsum (map fst [(k, _)\<leftarrow>xs . 0 < k]) = listsum (map fst xs)" by (induct xs) auto then show ?thesis by (simp only: select_weight_def pick_drop_zero) qed lemma select_weight_select: assumes "xs \<noteq> []" shows "select_weight (map (Pair 1) xs) = select xs" proof - have less: "\<And>s. fst (range (Code_Numeral.of_nat (length xs)) s) < Code_Numeral.of_nat (length xs)" using assms by (intro range) simp moreover have "listsum (map fst (map (Pair 1) xs)) = Code_Numeral.of_nat (length xs)" by (induct xs) simp_all ultimately show ?thesis by (auto simp add: select_weight_def select_def scomp_def split_def fun_eq_iff pick_same [symmetric]) qed subsection {* @{text ML} interface *} code_reflect Random_Engine functions range select select_weight ML {* structure Random_Engine = struct open Random_Engine; type seed = int * int; local val seed = Unsynchronized.ref (let val now = Time.toMilliseconds (Time.now ()); val (q, s1) = IntInf.divMod (now, 2147483562); val s2 = q mod 2147483398; in (s1 + 1, s2 + 1) end); in fun next_seed () = let val (seed1, seed') = @{code split_seed} (! seed) val _ = seed := seed' in seed1 end fun run f = let val (x, seed') = f (! seed); val _ = seed := seed' in x end; end; end; *} hide_type (open) seed hide_const (open) inc_shift minus_shift log "next" split_seed iterate range select pick select_weight hide_fact (open) range_def no_notation fcomp (infixl "\<circ>>" 60) no_notation scomp (infixl "\<circ>\<rightarrow>" 60) end