| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46696 | 28a01ea3523a |
| child 46752 | e9e7209eb375 |
| permissions | -rw-r--r-- |
(* Title: HOL/Relation.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory; Stefan Berghofer, TU Muenchen *) header {* Relations – as sets of pairs, and binary predicates *} theory Relation imports Datatype Finite_Set begin text {* A preliminary: classical rules for reasoning on predicates *} (* CANDIDATE declare predicate1I [Pure.intro!, intro!] *) declare predicate1D [Pure.dest?, dest?] (* CANDIDATE declare predicate1D [Pure.dest, dest] *) declare predicate2I [Pure.intro!, intro!] declare predicate2D [Pure.dest, dest] declare bot1E [elim!] declare bot2E [elim!] declare top1I [intro!] declare top2I [intro!] declare inf1I [intro!] declare inf2I [intro!] declare inf1E [elim!] declare inf2E [elim!] declare sup1I1 [intro?] declare sup2I1 [intro?] declare sup1I2 [intro?] declare sup2I2 [intro?] declare sup1E [elim!] declare sup2E [elim!] declare sup1CI [intro!] declare sup2CI [intro!] declare INF1_I [intro!] declare INF2_I [intro!] declare INF1_D [elim] declare INF2_D [elim] declare INF1_E [elim] declare INF2_E [elim] declare SUP1_I [intro] declare SUP2_I [intro] declare SUP1_E [elim!] declare SUP2_E [elim!] subsection {* Fundamental *} subsubsection {* Relations as sets of pairs *} type_synonym 'a rel = "('a * 'a) set" lemma subrelI: -- {* Version of @{thm [source] subsetI} for binary relations *} "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s" by auto lemma lfp_induct2: -- {* Version of @{thm [source] lfp_induct} for binary relations *} "(a, b) \<in> lfp f \<Longrightarrow> mono f \<Longrightarrow> (\<And>a b. (a, b) \<in> f (lfp f \<inter> {(x, y). P x y}) \<Longrightarrow> P a b) \<Longrightarrow> P a b" using lfp_induct_set [of "(a, b)" f "prod_case P"] by auto subsubsection {* Conversions between set and predicate relations *} lemma pred_equals_eq [pred_set_conv]: "((\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S)) \<longleftrightarrow> (R = S)" by (simp add: set_eq_iff fun_eq_iff) lemma pred_equals_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S)) \<longleftrightarrow> (R = S)" by (simp add: set_eq_iff fun_eq_iff) lemma pred_subset_eq [pred_set_conv]: "((\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S)) \<longleftrightarrow> (R \<subseteq> S)" by (simp add: subset_iff le_fun_def) lemma pred_subset_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S)) \<longleftrightarrow> (R \<subseteq> S)" by (simp add: subset_iff le_fun_def) lemma bot_empty_eq (* CANDIDATE [pred_set_conv] *): "\<bottom> = (\<lambda>x. x \<in> {})" by (auto simp add: fun_eq_iff) lemma bot_empty_eq2 (* CANDIDATE [pred_set_conv] *): "\<bottom> = (\<lambda>x y. (x, y) \<in> {})" by (auto simp add: fun_eq_iff) (* CANDIDATE lemma top_empty_eq [pred_set_conv]: "\<top> = (\<lambda>x. x \<in> UNIV)" by (auto simp add: fun_eq_iff) *) (* CANDIDATE lemma top_empty_eq2 [pred_set_conv]: "\<top> = (\<lambda>x y. (x, y) \<in> UNIV)" by (auto simp add: fun_eq_iff) *) lemma inf_Int_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)" by (simp add: inf_fun_def) lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)" by (simp add: inf_fun_def) lemma sup_Un_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)" by (simp add: sup_fun_def) lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)" by (simp add: sup_fun_def) lemma INF_INT_eq (* CANDIDATE [pred_set_conv] *): "(\<Sqinter>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Inter>i. r i))" by (simp add: INF_apply fun_eq_iff) lemma INF_INT_eq2 (* CANDIDATE [pred_set_conv] *): "(\<Sqinter>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Inter>i. r i))" by (simp add: INF_apply fun_eq_iff) lemma SUP_UN_eq [pred_set_conv]: "(\<Squnion>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i. r i))" by (simp add: SUP_apply fun_eq_iff) lemma SUP_UN_eq2 [pred_set_conv]: "(\<Squnion>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i. r i))" by (simp add: SUP_apply fun_eq_iff) subsection {* Properties of relations *} subsubsection {* Reflexivity *} definition refl_on :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" where "refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)" abbreviation refl :: "('a * 'a) set => bool" where -- {* reflexivity over a type *} "refl \<equiv> refl_on UNIV" definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "reflp r \<longleftrightarrow> refl {(x, y). r x y}" lemma refl_onI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl_on A r" by (unfold refl_on_def) (iprover intro!: ballI) lemma refl_onD: "refl_on A r ==> a : A ==> (a, a) : r" by (unfold refl_on_def) blast lemma refl_onD1: "refl_on A r ==> (x, y) : r ==> x : A" by (unfold refl_on_def) blast lemma refl_onD2: "refl_on A r ==> (x, y) : r ==> y : A" by (unfold refl_on_def) blast lemma reflpI: "(\<And>x. r x x) \<Longrightarrow> reflp r" by (auto intro: refl_onI simp add: reflp_def) lemma reflpE: assumes "reflp r" obtains "r x x" using assms by (auto dest: refl_onD simp add: reflp_def) lemma refl_on_Int: "refl_on A r ==> refl_on B s ==> refl_on (A \<inter> B) (r \<inter> s)" by (unfold refl_on_def) blast lemma refl_on_Un: "refl_on A r ==> refl_on B s ==> refl_on (A \<union> B) (r \<union> s)" by (unfold refl_on_def) blast lemma refl_on_INTER: "ALL x:S. refl_on (A x) (r x) ==> refl_on (INTER S A) (INTER S r)" by (unfold refl_on_def) fast lemma refl_on_UNION: "ALL x:S. refl_on (A x) (r x) \<Longrightarrow> refl_on (UNION S A) (UNION S r)" by (unfold refl_on_def) blast lemma refl_on_empty[simp]: "refl_on {} {}" by(simp add:refl_on_def) lemma refl_on_def' [nitpick_unfold, code]: "refl_on A r = ((\<forall>(x, y) \<in> r. x : A \<and> y : A) \<and> (\<forall>x \<in> A. (x, x) : r))" by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2) subsubsection {* Irreflexivity *} definition irrefl :: "('a * 'a) set => bool" where "irrefl r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r)" lemma irrefl_distinct [code]: "irrefl r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<noteq> y)" by (auto simp add: irrefl_def) subsubsection {* Symmetry *} definition sym :: "('a * 'a) set => bool" where "sym r \<longleftrightarrow> (ALL x y. (x,y): r --> (y,x): r)" lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r" by (unfold sym_def) iprover lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" by (unfold sym_def, blast) definition symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "symp r \<longleftrightarrow> sym {(x, y). r x y}" lemma sympI: "(\<And>x y. r x y \<Longrightarrow> r y x) \<Longrightarrow> symp r" by (auto intro: symI simp add: symp_def) lemma sympE: assumes "symp r" and "r x y" obtains "r y x" using assms by (auto dest: symD simp add: symp_def) lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)" by (fast intro: symI dest: symD) lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)" by (fast intro: symI dest: symD) lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)" by (fast intro: symI dest: symD) lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)" by (fast intro: symI dest: symD) subsubsection {* Antisymmetry *} definition antisym :: "('a * 'a) set => bool" where "antisym r \<longleftrightarrow> (ALL x y. (x,y):r --> (y,x):r --> x=y)" lemma antisymI: "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" by (unfold antisym_def) iprover lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" by (unfold antisym_def) iprover abbreviation antisymP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "antisymP r \<equiv> antisym {(x, y). r x y}" lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r" by (unfold antisym_def) blast lemma antisym_empty [simp]: "antisym {}" by (unfold antisym_def) blast subsubsection {* Transitivity *} definition trans :: "('a * 'a) set => bool" where "trans r \<longleftrightarrow> (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)" lemma transI: "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" by (unfold trans_def) iprover lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" by (unfold trans_def) iprover abbreviation transP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "transP r \<equiv> trans {(x, y). r x y}" definition transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "transp r \<longleftrightarrow> trans {(x, y). r x y}" lemma transpI: "(\<And>x y z. r x y \<Longrightarrow> r y z \<Longrightarrow> r x z) \<Longrightarrow> transp r" by (auto intro: transI simp add: transp_def) lemma transpE: assumes "transp r" and "r x y" and "r y z" obtains "r x z" using assms by (auto dest: transD simp add: transp_def) lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)" by (fast intro: transI elim: transD) lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)" by (fast intro: transI elim: transD) lemma trans_join [code]: "trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)" by (auto simp add: trans_def) subsubsection {* Totality *} definition total_on :: "'a set => ('a * 'a) set => bool" where "total_on A r \<longleftrightarrow> (\<forall>x\<in>A.\<forall>y\<in>A. x\<noteq>y \<longrightarrow> (x,y)\<in>r \<or> (y,x)\<in>r)" abbreviation "total \<equiv> total_on UNIV" lemma total_on_empty[simp]: "total_on {} r" by(simp add:total_on_def) subsubsection {* Single valued relations *} definition single_valued :: "('a * 'b) set => bool" where "single_valued r \<longleftrightarrow> (ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z))" lemma single_valuedI: "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r" by (unfold single_valued_def) lemma single_valuedD: "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" by (simp add: single_valued_def) abbreviation single_valuedP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "single_valuedP r \<equiv> single_valued {(x, y). r x y}" lemma single_valued_subset: "r \<subseteq> s ==> single_valued s ==> single_valued r" by (unfold single_valued_def) blast subsection {* Relation operations *} subsubsection {* The identity relation *} definition Id :: "('a * 'a) set" where "Id = {p. EX x. p = (x,x)}" lemma IdI [intro]: "(a, a) : Id" by (simp add: Id_def) lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" by (unfold Id_def) (iprover elim: CollectE) lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" by (unfold Id_def) blast lemma refl_Id: "refl Id" by (simp add: refl_on_def) lemma antisym_Id: "antisym Id" -- {* A strange result, since @{text Id} is also symmetric. *} by (simp add: antisym_def) lemma sym_Id: "sym Id" by (simp add: sym_def) lemma trans_Id: "trans Id" by (simp add: trans_def) lemma single_valued_Id [simp]: "single_valued Id" by (unfold single_valued_def) blast lemma irrefl_diff_Id [simp]: "irrefl (r - Id)" by (simp add:irrefl_def) lemma trans_diff_Id: "trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r - Id)" unfolding antisym_def trans_def by blast lemma total_on_diff_Id [simp]: "total_on A (r - Id) = total_on A r" by (simp add: total_on_def) subsubsection {* Diagonal: identity over a set *} definition Id_on :: "'a set => ('a * 'a) set" where "Id_on A = (\<Union>x\<in>A. {(x,x)})" lemma Id_on_empty [simp]: "Id_on {} = {}" by (simp add: Id_on_def) lemma Id_on_eqI: "a = b ==> a : A ==> (a, b) : Id_on A" by (simp add: Id_on_def) lemma Id_onI [intro!,no_atp]: "a : A ==> (a, a) : Id_on A" by (rule Id_on_eqI) (rule refl) lemma Id_onE [elim!]: "c : Id_on A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" -- {* The general elimination rule. *} by (unfold Id_on_def) (iprover elim!: UN_E singletonE) lemma Id_on_iff: "((x, y) : Id_on A) = (x = y & x : A)" by blast lemma Id_on_def' [nitpick_unfold]: "Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)" by auto lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A" by blast lemma refl_on_Id_on: "refl_on A (Id_on A)" by (rule refl_onI [OF Id_on_subset_Times Id_onI]) lemma antisym_Id_on [simp]: "antisym (Id_on A)" by (unfold antisym_def) blast lemma sym_Id_on [simp]: "sym (Id_on A)" by (rule symI) clarify lemma trans_Id_on [simp]: "trans (Id_on A)" by (fast intro: transI elim: transD) lemma single_valued_Id_on [simp]: "single_valued (Id_on A)" by (unfold single_valued_def) blast subsubsection {* Composition *} definition rel_comp :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'c) set \<Rightarrow> ('a * 'c) set" (infixr "O" 75) where "r O s = {(x, z). \<exists>y. (x, y) \<in> r \<and> (y, z) \<in> s}" lemma rel_compI [intro]: "(a, b) : r ==> (b, c) : s ==> (a, c) : r O s" by (unfold rel_comp_def) blast lemma rel_compE [elim!]: "xz : r O s ==> (!!x y z. xz = (x, z) ==> (x, y) : r ==> (y, z) : s ==> P) ==> P" by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) inductive pred_comp :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'c \<Rightarrow> bool" (infixr "OO" 75) for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and s :: "'b \<Rightarrow> 'c \<Rightarrow> bool" where pred_compI [intro]: "r a b \<Longrightarrow> s b c \<Longrightarrow> (r OO s) a c" inductive_cases pred_compE [elim!]: "(r OO s) a c" lemma pred_comp_rel_comp_eq [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> r) OO (\<lambda>x y. (x, y) \<in> s)) = (\<lambda>x y. (x, y) \<in> r O s)" by (auto simp add: fun_eq_iff) lemma rel_compEpair: "(a, c) : r O s ==> (!!y. (a, y) : r ==> (y, c) : s ==> P) ==> P" by (iprover elim: rel_compE Pair_inject ssubst) lemma R_O_Id [simp]: "R O Id = R" by fast lemma Id_O_R [simp]: "Id O R = R" by fast lemma rel_comp_empty1[simp]: "{} O R = {}" by blast lemma rel_comp_empty2[simp]: "R O {} = {}" by blast lemma O_assoc: "(R O S) O T = R O (S O T)" by blast lemma trans_O_subset: "trans r ==> r O r \<subseteq> r" by (unfold trans_def) blast lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)" by blast lemma rel_comp_subset_Sigma: "r \<subseteq> A \<times> B ==> s \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C" by blast lemma rel_comp_distrib[simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)" by auto lemma rel_comp_distrib2[simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)" by auto lemma rel_comp_UNION_distrib: "s O UNION I r = UNION I (%i. s O r i)" by auto lemma rel_comp_UNION_distrib2: "UNION I r O s = UNION I (%i. r i O s)" by auto lemma single_valued_rel_comp: "single_valued r ==> single_valued s ==> single_valued (r O s)" by (unfold single_valued_def) blast subsubsection {* Converse *} definition converse :: "('a * 'b) set => ('b * 'a) set" ("(_^-1)" [1000] 999) where "r^-1 = {(y, x). (x, y) : r}" notation (xsymbols) converse ("(_\<inverse>)" [1000] 999) lemma converseI [sym]: "(a, b) : r ==> (b, a) : r^-1" by (simp add: converse_def) lemma converseD [sym]: "(a,b) : r^-1 ==> (b, a) : r" by (simp add: converse_def) lemma converseE [elim!]: "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} by (unfold converse_def) (iprover elim!: CollectE splitE bexE) lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)" by (simp add: converse_def) inductive conversep :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(_^--1)" [1000] 1000) for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where conversepI: "r a b \<Longrightarrow> r^--1 b a" notation (xsymbols) conversep ("(_\<inverse>\<inverse>)" [1000] 1000) lemma conversepD: assumes ab: "r^--1 a b" shows "r b a" using ab by cases simp lemma conversep_iff [iff]: "r^--1 a b = r b a" by (iprover intro: conversepI dest: conversepD) lemma conversep_converse_eq [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> r)^--1 = (\<lambda>x y. (x, y) \<in> r^-1)" by (auto simp add: fun_eq_iff) lemma conversep_conversep [simp]: "(r^--1)^--1 = r" by (iprover intro: order_antisym conversepI dest: conversepD) lemma converse_pred_comp: "(r OO s)^--1 = s^--1 OO r^--1" by (iprover intro: order_antisym conversepI pred_compI elim: pred_compE dest: conversepD) lemma converse_meet: "(r \<sqinter> s)^--1 = r^--1 \<sqinter> s^--1" by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD) lemma converse_join: "(r \<squnion> s)^--1 = r^--1 \<squnion> s^--1" by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD) lemma conversep_noteq [simp]: "(op \<noteq>)^--1 = op \<noteq>" by (auto simp add: fun_eq_iff) lemma conversep_eq [simp]: "(op =)^--1 = op =" by (auto simp add: fun_eq_iff) lemma converse_converse [simp]: "(r^-1)^-1 = r" by (unfold converse_def) blast lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1" by blast lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1" by blast lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1" by blast lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)" by fast lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)" by blast lemma converse_Id [simp]: "Id^-1 = Id" by blast lemma converse_Id_on [simp]: "(Id_on A)^-1 = Id_on A" by blast lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r" by (unfold refl_on_def) auto lemma sym_converse [simp]: "sym (converse r) = sym r" by (unfold sym_def) blast lemma antisym_converse [simp]: "antisym (converse r) = antisym r" by (unfold antisym_def) blast lemma trans_converse [simp]: "trans (converse r) = trans r" by (unfold trans_def) blast lemma sym_conv_converse_eq: "sym r = (r^-1 = r)" by (unfold sym_def) fast lemma sym_Un_converse: "sym (r \<union> r^-1)" by (unfold sym_def) blast lemma sym_Int_converse: "sym (r \<inter> r^-1)" by (unfold sym_def) blast lemma total_on_converse[simp]: "total_on A (r^-1) = total_on A r" by (auto simp: total_on_def) lemma finite_converse [iff]: "finite (r^-1) = finite r" apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") apply simp apply (rule iffI) apply (erule finite_imageD [unfolded inj_on_def]) apply (simp split add: split_split) apply (erule finite_imageI) apply (simp add: converse_def image_def, auto) apply (rule bexI) prefer 2 apply assumption apply simp done subsubsection {* Domain, range and field *} definition Domain :: "('a * 'b) set => 'a set" where "Domain r = {x. EX y. (x,y):r}" definition Range :: "('a * 'b) set => 'b set" where "Range r = Domain(r^-1)" definition Field :: "('a * 'a) set => 'a set" where "Field r = Domain r \<union> Range r" declare Domain_def [no_atp] lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" by (unfold Domain_def) blast lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" by (iprover intro!: iffD2 [OF Domain_iff]) lemma DomainE [elim!]: "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" by (iprover dest!: iffD1 [OF Domain_iff]) lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" by (simp add: Domain_def Range_def) lemma RangeI [intro]: "(a, b) : r ==> b : Range r" by (unfold Range_def) (iprover intro!: converseI DomainI) lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) inductive DomainP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where DomainPI [intro]: "r a b \<Longrightarrow> DomainP r a" inductive_cases DomainPE [elim!]: "DomainP r a" lemma DomainP_Domain_eq [pred_set_conv]: "DomainP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Domain r)" by (blast intro!: Orderings.order_antisym predicate1I) inductive RangeP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool" for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where RangePI [intro]: "r a b \<Longrightarrow> RangeP r b" inductive_cases RangePE [elim!]: "RangeP r b" lemma RangeP_Range_eq [pred_set_conv]: "RangeP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Range r)" by (auto intro!: Orderings.order_antisym predicate1I) lemma Domain_fst [code]: "Domain r = fst ` r" by (auto simp add: image_def Bex_def) lemma Domain_empty [simp]: "Domain {} = {}" by blast lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}" by auto lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" by blast lemma Domain_Id [simp]: "Domain Id = UNIV" by blast lemma Domain_Id_on [simp]: "Domain (Id_on A) = A" by blast lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)" by blast lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)" by blast lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)" by blast lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)" by blast lemma Domain_converse[simp]: "Domain(r^-1) = Range r" by(auto simp: Range_def) lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s" by blast lemma fst_eq_Domain: "fst ` R = Domain R" by force lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" by auto lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" by auto lemma Domain_Collect_split [simp]: "Domain {(x, y). P x y} = {x. EX y. P x y}" by auto lemma finite_Domain: "finite r ==> finite (Domain r)" by (induct set: finite) (auto simp add: Domain_insert) lemma Range_snd [code]: "Range r = snd ` r" by (auto simp add: image_def Bex_def) lemma Range_empty [simp]: "Range {} = {}" by blast lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}" by auto lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" by blast lemma Range_Id [simp]: "Range Id = UNIV" by blast lemma Range_Id_on [simp]: "Range (Id_on A) = A" by auto lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)" by blast lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)" by blast lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)" by blast lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)" by blast lemma Range_converse [simp]: "Range(r^-1) = Domain r" by blast lemma snd_eq_Range: "snd ` R = Range R" by force lemma Range_Collect_split [simp]: "Range {(x, y). P x y} = {y. EX x. P x y}" by auto lemma finite_Range: "finite r ==> finite (Range r)" by (induct set: finite) (auto simp add: Range_insert) lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s" by (auto simp: Field_def Domain_def Range_def) lemma Field_empty[simp]: "Field {} = {}" by (auto simp: Field_def) lemma Field_insert [simp]: "Field (insert (a, b) r) = {a, b} \<union> Field r" by (auto simp: Field_def) lemma Field_Un [simp]: "Field (r \<union> s) = Field r \<union> Field s" by (auto simp: Field_def) lemma Field_Union [simp]: "Field (\<Union>R) = \<Union>(Field ` R)" by (auto simp: Field_def) lemma Field_converse [simp]: "Field(r^-1) = Field r" by (auto simp: Field_def) lemma finite_Field: "finite r ==> finite (Field r)" -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *} apply (induct set: finite) apply (auto simp add: Field_def Domain_insert Range_insert) done subsubsection {* Image of a set under a relation *} definition Image :: "[('a * 'b) set, 'a set] => 'b set" (infixl "``" 90) where "r `` s = {y. EX x:s. (x,y):r}" declare Image_def [no_atp] lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" by (simp add: Image_def) lemma Image_singleton: "r``{a} = {b. (a, b) : r}" by (simp add: Image_def) lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" by (rule Image_iff [THEN trans]) simp lemma ImageI [intro,no_atp]: "(a, b) : r ==> a : A ==> b : r``A" by (unfold Image_def) blast lemma ImageE [elim!]: "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" by (unfold Image_def) (iprover elim!: CollectE bexE) lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" -- {* This version's more effective when we already have the required @{text a} *} by blast lemma Image_empty [simp]: "R``{} = {}" by blast lemma Image_Id [simp]: "Id `` A = A" by blast lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B" by blast lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" by blast lemma Image_Int_eq: "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" by (simp add: single_valued_def, blast) lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" by blast lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" by blast lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" -- {* NOT suitable for rewriting *} by blast lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" by blast lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" by blast lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" by blast text{*Converse inclusion requires some assumptions*} lemma Image_INT_eq: "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" apply (rule equalityI) apply (rule Image_INT_subset) apply (simp add: single_valued_def, blast) done lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))" by blast lemma Image_Collect_split [simp]: "{(x, y). P x y} `` A = {y. EX x:A. P x y}" by auto subsubsection {* Inverse image *} definition inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where "inv_image r f = {(x, y). (f x, f y) : r}" definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where "inv_imagep r f = (\<lambda>x y. r (f x) (f y))" lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)" by (simp add: inv_image_def inv_imagep_def) lemma sym_inv_image: "sym r ==> sym (inv_image r f)" by (unfold sym_def inv_image_def) blast lemma trans_inv_image: "trans r ==> trans (inv_image r f)" apply (unfold trans_def inv_image_def) apply (simp (no_asm)) apply blast done lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)" by (auto simp:inv_image_def) lemma converse_inv_image[simp]: "(inv_image R f)^-1 = inv_image (R^-1) f" unfolding inv_image_def converse_def by auto lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)" by (simp add: inv_imagep_def) subsubsection {* Powerset *} definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" where "Powp A = (\<lambda>B. \<forall>x \<in> B. A x)" lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)" by (auto simp add: Powp_def fun_eq_iff) lemmas Powp_mono [mono] = Pow_mono [to_pred] end