| author | wenzelm | 
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 | 
| parent 45605 | a89b4bc311a5 | 
| child 51702 | dcfab8e87621 | 
| permissions | -rw-r--r-- | 
(* Title: HOL/SET_Protocol/Message_SET.thy Author: Giampaolo Bella Author: Fabio Massacci Author: Lawrence C Paulson *) header{*The Message Theory, Modified for SET*} theory Message_SET imports Main "~~/src/HOL/Library/Nat_Bijection" begin subsection{*General Lemmas*} text{*Needed occasionally with @{text spy_analz_tac}, e.g. in @{text analz_insert_Key_newK}*} lemma Un_absorb3 [simp] : "A \<union> (B \<union> A) = B \<union> A" by blast text{*Collapses redundant cases in the huge protocol proofs*} lemmas disj_simps = disj_comms disj_left_absorb disj_assoc text{*Effective with assumptions like @{term "K \<notin> range pubK"} and @{term "K \<notin> invKey`range pubK"}*} lemma notin_image_iff: "(y \<notin> f`I) = (\<forall>i\<in>I. f i \<noteq> y)" by blast text{*Effective with the assumption @{term "KK \<subseteq> - (range(invKey o pubK))"} *} lemma disjoint_image_iff: "(A <= - (f`I)) = (\<forall>i\<in>I. f i \<notin> A)" by blast type_synonym key = nat consts all_symmetric :: bool --{*true if all keys are symmetric*} invKey :: "key=>key" --{*inverse of a symmetric key*} specification (invKey) invKey [simp]: "invKey (invKey K) = K" invKey_symmetric: "all_symmetric --> invKey = id" by (rule exI [of _ id], auto) text{*The inverse of a symmetric key is itself; that of a public key is the private key and vice versa*} definition symKeys :: "key set" where "symKeys == {K. invKey K = K}" text{*Agents. We allow any number of certification authorities, cardholders merchants, and payment gateways.*} datatype agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy text{*Messages*} datatype msg = Agent agent --{*Agent names*} | Number nat --{*Ordinary integers, timestamps, ...*} | Nonce nat --{*Unguessable nonces*} | Pan nat --{*Unguessable Primary Account Numbers (??)*} | Key key --{*Crypto keys*} | Hash msg --{*Hashing*} | MPair msg msg --{*Compound messages*} | Crypt key msg --{*Encryption, public- or shared-key*} (*Concrete syntax: messages appear as {|A,B,NA|}, etc...*) syntax "_MTuple" :: "['a, args] => 'a * 'b" ("(2{|_,/ _|})") syntax (xsymbols) "_MTuple" :: "['a, args] => 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") translations "{|x, y, z|}" == "{|x, {|y, z|}|}" "{|x, y|}" == "CONST MPair x y" definition nat_of_agent :: "agent => nat" where "nat_of_agent == agent_case (curry prod_encode 0) (curry prod_encode 1) (curry prod_encode 2) (curry prod_encode 3) (prod_encode (4,0))" --{*maps each agent to a unique natural number, for specifications*} text{*The function is indeed injective*} lemma inj_nat_of_agent: "inj nat_of_agent" by (simp add: nat_of_agent_def inj_on_def curry_def prod_encode_eq split: agent.split) definition (*Keys useful to decrypt elements of a message set*) keysFor :: "msg set => key set" where "keysFor H = invKey ` {K. \<exists>X. Crypt K X \<in> H}" subsubsection{*Inductive definition of all "parts" of a message.*} inductive_set parts :: "msg set => msg set" for H :: "msg set" where Inj [intro]: "X \<in> H ==> X \<in> parts H" | Fst: "{|X,Y|} \<in> parts H ==> X \<in> parts H" | Snd: "{|X,Y|} \<in> parts H ==> Y \<in> parts H" | Body: "Crypt K X \<in> parts H ==> X \<in> parts H" (*Monotonicity*) lemma parts_mono: "G<=H ==> parts(G) <= parts(H)" apply auto apply (erule parts.induct) apply (auto dest: Fst Snd Body) done subsubsection{*Inverse of keys*} (*Equations hold because constructors are injective; cannot prove for all f*) lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" by auto lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" by auto lemma Cardholder_image_eq [simp]: "(Cardholder x \<in> Cardholder`A) = (x \<in> A)" by auto lemma CA_image_eq [simp]: "(CA x \<in> CA`A) = (x \<in> A)" by auto lemma Pan_image_eq [simp]: "(Pan x \<in> Pan`A) = (x \<in> A)" by auto lemma Pan_Key_image_eq [simp]: "(Pan x \<notin> Key`A)" by auto lemma Nonce_Pan_image_eq [simp]: "(Nonce x \<notin> Pan`A)" by auto lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" apply safe apply (drule_tac f = invKey in arg_cong, simp) done subsection{*keysFor operator*} lemma keysFor_empty [simp]: "keysFor {} = {}" by (unfold keysFor_def, blast) lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" by (unfold keysFor_def, blast) lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" by (unfold keysFor_def, blast) (*Monotonicity*) lemma keysFor_mono: "G\<subseteq>H ==> keysFor(G) \<subseteq> keysFor(H)" by (unfold keysFor_def, blast) lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" by (unfold keysFor_def, auto) lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" by (unfold keysFor_def, auto) lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" by (unfold keysFor_def, auto) lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" by (unfold keysFor_def, auto) lemma keysFor_insert_Pan [simp]: "keysFor (insert (Pan A) H) = keysFor H" by (unfold keysFor_def, auto) lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" by (unfold keysFor_def, auto) lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H" by (unfold keysFor_def, auto) lemma keysFor_insert_Crypt [simp]: "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" by (unfold keysFor_def, auto) lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}" by (unfold keysFor_def, auto) lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" by (unfold keysFor_def, blast) subsection{*Inductive relation "parts"*} lemma MPair_parts: "[| {|X,Y|} \<in> parts H; [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" by (blast dest: parts.Fst parts.Snd) declare MPair_parts [elim!] parts.Body [dest!] text{*NB These two rules are UNSAFE in the formal sense, as they discard the compound message. They work well on THIS FILE. @{text MPair_parts} is left as SAFE because it speeds up proofs. The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*} lemma parts_increasing: "H \<subseteq> parts(H)" by blast lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] lemma parts_empty [simp]: "parts{} = {}" apply safe apply (erule parts.induct, blast+) done lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P" by simp (*WARNING: loops if H = {Y}, therefore must not be repeated!*) lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}" by (erule parts.induct, fast+) subsubsection{*Unions*} lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" by (intro Un_least parts_mono Un_upper1 Un_upper2) lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" apply (rule subsetI) apply (erule parts.induct, blast+) done lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" by (intro equalityI parts_Un_subset1 parts_Un_subset2) lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H" apply (subst insert_is_Un [of _ H]) apply (simp only: parts_Un) done (*TWO inserts to avoid looping. This rewrite is better than nothing. Not suitable for Addsimps: its behaviour can be strange.*) lemma parts_insert2: "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H" apply (simp add: Un_assoc) apply (simp add: parts_insert [symmetric]) done lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" by (intro UN_least parts_mono UN_upper) lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" apply (rule subsetI) apply (erule parts.induct, blast+) done lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" by (intro equalityI parts_UN_subset1 parts_UN_subset2) (*Added to simplify arguments to parts, analz and synth. NOTE: the UN versions are no longer used!*) text{*This allows @{text blast} to simplify occurrences of @{term "parts(G\<union>H)"} in the assumption.*} declare parts_Un [THEN equalityD1, THEN subsetD, THEN UnE, elim!] lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" by (blast intro: parts_mono [THEN [2] rev_subsetD]) subsubsection{*Idempotence and transitivity*} lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" by (erule parts.induct, blast+) lemma parts_idem [simp]: "parts (parts H) = parts H" by blast lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" by (drule parts_mono, blast) (*Cut*) lemma parts_cut: "[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" by (erule parts_trans, auto) lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" by (force dest!: parts_cut intro: parts_insertI) subsubsection{*Rewrite rules for pulling out atomic messages*} lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] lemma parts_insert_Agent [simp]: "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" apply (rule parts_insert_eq_I) apply (erule parts.induct, auto) done lemma parts_insert_Nonce [simp]: "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" apply (rule parts_insert_eq_I) apply (erule parts.induct, auto) done lemma parts_insert_Number [simp]: "parts (insert (Number N) H) = insert (Number N) (parts H)" apply (rule parts_insert_eq_I) apply (erule parts.induct, auto) done lemma parts_insert_Key [simp]: "parts (insert (Key K) H) = insert (Key K) (parts H)" apply (rule parts_insert_eq_I) apply (erule parts.induct, auto) done lemma parts_insert_Pan [simp]: "parts (insert (Pan A) H) = insert (Pan A) (parts H)" apply (rule parts_insert_eq_I) apply (erule parts.induct, auto) done lemma parts_insert_Hash [simp]: "parts (insert (Hash X) H) = insert (Hash X) (parts H)" apply (rule parts_insert_eq_I) apply (erule parts.induct, auto) done lemma parts_insert_Crypt [simp]: "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" apply (rule equalityI) apply (rule subsetI) apply (erule parts.induct, auto) apply (erule parts.induct) apply (blast intro: parts.Body)+ done lemma parts_insert_MPair [simp]: "parts (insert {|X,Y|} H) = insert {|X,Y|} (parts (insert X (insert Y H)))" apply (rule equalityI) apply (rule subsetI) apply (erule parts.induct, auto) apply (erule parts.induct) apply (blast intro: parts.Fst parts.Snd)+ done lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" apply auto apply (erule parts.induct, auto) done lemma parts_image_Pan [simp]: "parts (Pan`A) = Pan`A" apply auto apply (erule parts.induct, auto) done (*In any message, there is an upper bound N on its greatest nonce.*) lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}" apply (induct_tac "msg") apply (simp_all (no_asm_simp) add: exI parts_insert2) (*MPair case: blast_tac works out the necessary sum itself!*) prefer 2 apply (blast elim!: add_leE) (*Nonce case*) apply (rule_tac x = "N + Suc nat" in exI) apply (auto elim!: add_leE) done (* Ditto, for numbers.*) lemma msg_Number_supply: "\<exists>N. \<forall>n. N<=n --> Number n \<notin> parts {msg}" apply (induct_tac "msg") apply (simp_all (no_asm_simp) add: exI parts_insert2) prefer 2 apply (blast elim!: add_leE) apply (rule_tac x = "N + Suc nat" in exI, auto) done subsection{*Inductive relation "analz"*} text{*Inductive definition of "analz" -- what can be broken down from a set of messages, including keys. A form of downward closure. Pairs can be taken apart; messages decrypted with known keys.*} inductive_set analz :: "msg set => msg set" for H :: "msg set" where Inj [intro,simp] : "X \<in> H ==> X \<in> analz H" | Fst: "{|X,Y|} \<in> analz H ==> X \<in> analz H" | Snd: "{|X,Y|} \<in> analz H ==> Y \<in> analz H" | Decrypt [dest]: "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" (*Monotonicity; Lemma 1 of Lowe's paper*) lemma analz_mono: "G<=H ==> analz(G) <= analz(H)" apply auto apply (erule analz.induct) apply (auto dest: Fst Snd) done text{*Making it safe speeds up proofs*} lemma MPair_analz [elim!]: "[| {|X,Y|} \<in> analz H; [| X \<in> analz H; Y \<in> analz H |] ==> P |] ==> P" by (blast dest: analz.Fst analz.Snd) lemma analz_increasing: "H \<subseteq> analz(H)" by blast lemma analz_subset_parts: "analz H \<subseteq> parts H" apply (rule subsetI) apply (erule analz.induct, blast+) done lemmas analz_into_parts = analz_subset_parts [THEN subsetD] lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] lemma parts_analz [simp]: "parts (analz H) = parts H" apply (rule equalityI) apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp) apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD]) done lemma analz_parts [simp]: "analz (parts H) = parts H" apply auto apply (erule analz.induct, auto) done lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] subsubsection{*General equational properties*} lemma analz_empty [simp]: "analz{} = {}" apply safe apply (erule analz.induct, blast+) done (*Converse fails: we can analz more from the union than from the separate parts, as a key in one might decrypt a message in the other*) lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" by (intro Un_least analz_mono Un_upper1 Un_upper2) lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" by (blast intro: analz_mono [THEN [2] rev_subsetD]) subsubsection{*Rewrite rules for pulling out atomic messages*} lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] lemma analz_insert_Agent [simp]: "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" apply (rule analz_insert_eq_I) apply (erule analz.induct, auto) done lemma analz_insert_Nonce [simp]: "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" apply (rule analz_insert_eq_I) apply (erule analz.induct, auto) done lemma analz_insert_Number [simp]: "analz (insert (Number N) H) = insert (Number N) (analz H)" apply (rule analz_insert_eq_I) apply (erule analz.induct, auto) done lemma analz_insert_Hash [simp]: "analz (insert (Hash X) H) = insert (Hash X) (analz H)" apply (rule analz_insert_eq_I) apply (erule analz.induct, auto) done (*Can only pull out Keys if they are not needed to decrypt the rest*) lemma analz_insert_Key [simp]: "K \<notin> keysFor (analz H) ==> analz (insert (Key K) H) = insert (Key K) (analz H)" apply (unfold keysFor_def) apply (rule analz_insert_eq_I) apply (erule analz.induct, auto) done lemma analz_insert_MPair [simp]: "analz (insert {|X,Y|} H) = insert {|X,Y|} (analz (insert X (insert Y H)))" apply (rule equalityI) apply (rule subsetI) apply (erule analz.induct, auto) apply (erule analz.induct) apply (blast intro: analz.Fst analz.Snd)+ done (*Can pull out enCrypted message if the Key is not known*) lemma analz_insert_Crypt: "Key (invKey K) \<notin> analz H ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" apply (rule analz_insert_eq_I) apply (erule analz.induct, auto) done lemma analz_insert_Pan [simp]: "analz (insert (Pan A) H) = insert (Pan A) (analz H)" apply (rule analz_insert_eq_I) apply (erule analz.induct, auto) done lemma lemma1: "Key (invKey K) \<in> analz H ==> analz (insert (Crypt K X) H) \<subseteq> insert (Crypt K X) (analz (insert X H))" apply (rule subsetI) apply (erule_tac x = x in analz.induct, auto) done lemma lemma2: "Key (invKey K) \<in> analz H ==> insert (Crypt K X) (analz (insert X H)) \<subseteq> analz (insert (Crypt K X) H)" apply auto apply (erule_tac x = x in analz.induct, auto) apply (blast intro: analz_insertI analz.Decrypt) done lemma analz_insert_Decrypt: "Key (invKey K) \<in> analz H ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz (insert X H))" by (intro equalityI lemma1 lemma2) (*Case analysis: either the message is secure, or it is not! Effective, but can cause subgoals to blow up! Use with split_if; apparently split_tac does not cope with patterns such as "analz (insert (Crypt K X) H)" *) lemma analz_Crypt_if [simp]: "analz (insert (Crypt K X) H) = (if (Key (invKey K) \<in> analz H) then insert (Crypt K X) (analz (insert X H)) else insert (Crypt K X) (analz H))" by (simp add: analz_insert_Crypt analz_insert_Decrypt) (*This rule supposes "for the sake of argument" that we have the key.*) lemma analz_insert_Crypt_subset: "analz (insert (Crypt K X) H) \<subseteq> insert (Crypt K X) (analz (insert X H))" apply (rule subsetI) apply (erule analz.induct, auto) done lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" apply auto apply (erule analz.induct, auto) done lemma analz_image_Pan [simp]: "analz (Pan`A) = Pan`A" apply auto apply (erule analz.induct, auto) done subsubsection{*Idempotence and transitivity*} lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" by (erule analz.induct, blast+) lemma analz_idem [simp]: "analz (analz H) = analz H" by blast lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" by (drule analz_mono, blast) (*Cut; Lemma 2 of Lowe*) lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" by (erule analz_trans, blast) (*Cut can be proved easily by induction on "Y: analz (insert X H) ==> X: analz H --> Y: analz H" *) (*This rewrite rule helps in the simplification of messages that involve the forwarding of unknown components (X). Without it, removing occurrences of X can be very complicated. *) lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" by (blast intro: analz_cut analz_insertI) text{*A congruence rule for "analz"*} lemma analz_subset_cong: "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" apply clarify apply (erule analz.induct) apply (best intro: analz_mono [THEN subsetD])+ done lemma analz_cong: "[| analz G = analz G'; analz H = analz H' |] ==> analz (G \<union> H) = analz (G' \<union> H')" by (intro equalityI analz_subset_cong, simp_all) lemma analz_insert_cong: "analz H = analz H' ==> analz(insert X H) = analz(insert X H')" by (force simp only: insert_def intro!: analz_cong) (*If there are no pairs or encryptions then analz does nothing*) lemma analz_trivial: "[| \<forall>X Y. {|X,Y|} \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H" apply safe apply (erule analz.induct, blast+) done (*These two are obsolete (with a single Spy) but cost little to prove...*) lemma analz_UN_analz_lemma: "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" apply (erule analz.induct) apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ done lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) subsection{*Inductive relation "synth"*} text{*Inductive definition of "synth" -- what can be built up from a set of messages. A form of upward closure. Pairs can be built, messages encrypted with known keys. Agent names are public domain. Numbers can be guessed, but Nonces cannot be.*} inductive_set synth :: "msg set => msg set" for H :: "msg set" where Inj [intro]: "X \<in> H ==> X \<in> synth H" | Agent [intro]: "Agent agt \<in> synth H" | Number [intro]: "Number n \<in> synth H" | Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" | MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> {|X,Y|} \<in> synth H" | Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" (*Monotonicity*) lemma synth_mono: "G<=H ==> synth(G) <= synth(H)" apply auto apply (erule synth.induct) apply (auto dest: Fst Snd Body) done (*NO Agent_synth, as any Agent name can be synthesized. Ditto for Number*) inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H" inductive_cases Key_synth [elim!]: "Key K \<in> synth H" inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H" inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H" inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H" inductive_cases Pan_synth [elim!]: "Pan A \<in> synth H" lemma synth_increasing: "H \<subseteq> synth(H)" by blast subsubsection{*Unions*} (*Converse fails: we can synth more from the union than from the separate parts, building a compound message using elements of each.*) lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" by (intro Un_least synth_mono Un_upper1 Un_upper2) lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" by (blast intro: synth_mono [THEN [2] rev_subsetD]) subsubsection{*Idempotence and transitivity*} lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" by (erule synth.induct, blast+) lemma synth_idem: "synth (synth H) = synth H" by blast lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" by (drule synth_mono, blast) (*Cut; Lemma 2 of Lowe*) lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" by (erule synth_trans, blast) lemma Agent_synth [simp]: "Agent A \<in> synth H" by blast lemma Number_synth [simp]: "Number n \<in> synth H" by blast lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)" by blast lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)" by blast lemma Crypt_synth_eq [simp]: "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" by blast lemma Pan_synth_eq [simp]: "(Pan A \<in> synth H) = (Pan A \<in> H)" by blast lemma keysFor_synth [simp]: "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}" by (unfold keysFor_def, blast) subsubsection{*Combinations of parts, analz and synth*} lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" apply (rule equalityI) apply (rule subsetI) apply (erule parts.induct) apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] parts.Fst parts.Snd parts.Body)+ done lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" apply (intro equalityI analz_subset_cong)+ apply simp_all done lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" apply (rule equalityI) apply (rule subsetI) apply (erule analz.induct) prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ done lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" apply (cut_tac H = "{}" in analz_synth_Un) apply (simp (no_asm_use)) done subsubsection{*For reasoning about the Fake rule in traces*} lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" by (rule subset_trans [OF parts_mono parts_Un_subset2], blast) (*More specifically for Fake. Very occasionally we could do with a version of the form parts{X} \<subseteq> synth (analz H) \<union> parts H *) lemma Fake_parts_insert: "X \<in> synth (analz H) ==> parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" apply (drule parts_insert_subset_Un) apply (simp (no_asm_use)) apply blast done lemma Fake_parts_insert_in_Un: "[|Z \<in> parts (insert X H); X: synth (analz H)|] ==> Z \<in> synth (analz H) \<union> parts H"; by (blast dest: Fake_parts_insert [THEN subsetD, dest]) (*H is sometimes (Key ` KK \<union> spies evs), so can't put G=H*) lemma Fake_analz_insert: "X\<in> synth (analz G) ==> analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" apply (rule subsetI) apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ") prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) apply (simp (no_asm_use)) apply blast done lemma analz_conj_parts [simp]: "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" by (blast intro: analz_subset_parts [THEN subsetD]) lemma analz_disj_parts [simp]: "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" by (blast intro: analz_subset_parts [THEN subsetD]) (*Without this equation, other rules for synth and analz would yield redundant cases*) lemma MPair_synth_analz [iff]: "({|X,Y|} \<in> synth (analz H)) = (X \<in> synth (analz H) & Y \<in> synth (analz H))" by blast lemma Crypt_synth_analz: "[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" by blast lemma Hash_synth_analz [simp]: "X \<notin> synth (analz H) ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)" by blast (*We do NOT want Crypt... messages broken up in protocols!!*) declare parts.Body [rule del] text{*Rewrites to push in Key and Crypt messages, so that other messages can be pulled out using the @{text analz_insert} rules*} lemmas pushKeys = insert_commute [of "Key K" "Agent C"] insert_commute [of "Key K" "Nonce N"] insert_commute [of "Key K" "Number N"] insert_commute [of "Key K" "Pan PAN"] insert_commute [of "Key K" "Hash X"] insert_commute [of "Key K" "MPair X Y"] insert_commute [of "Key K" "Crypt X K'"] for K C N PAN X Y K' lemmas pushCrypts = insert_commute [of "Crypt X K" "Agent C"] insert_commute [of "Crypt X K" "Nonce N"] insert_commute [of "Crypt X K" "Number N"] insert_commute [of "Crypt X K" "Pan PAN"] insert_commute [of "Crypt X K" "Hash X'"] insert_commute [of "Crypt X K" "MPair X' Y"] for X K C N PAN X' Y text{*Cannot be added with @{text "[simp]"} -- messages should not always be re-ordered.*} lemmas pushes = pushKeys pushCrypts subsection{*Tactics useful for many protocol proofs*} (*<*) ML {* (*Analysis of Fake cases. Also works for messages that forward unknown parts, but this application is no longer necessary if analz_insert_eq is used. Abstraction over i is ESSENTIAL: it delays the dereferencing of claset DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) fun impOfSubs th = th RSN (2, @{thm rev_subsetD}) (*Apply rules to break down assumptions of the form Y \<in> parts(insert X H) and Y \<in> analz(insert X H) *) val Fake_insert_tac = dresolve_tac [impOfSubs @{thm Fake_analz_insert}, impOfSubs @{thm Fake_parts_insert}] THEN' eresolve_tac [asm_rl, @{thm synth.Inj}]; fun Fake_insert_simp_tac ss i = REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i; fun atomic_spy_analz_tac ctxt = SELECT_GOAL (Fake_insert_simp_tac (simpset_of ctxt) 1 THEN IF_UNSOLVED (Blast.depth_tac (ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1)); fun spy_analz_tac ctxt i = DETERM (SELECT_GOAL (EVERY [ (*push in occurrences of X...*) (REPEAT o CHANGED) (res_inst_tac ctxt [(("x", 1), "X")] (insert_commute RS ssubst) 1), (*...allowing further simplifications*) simp_tac (simpset_of ctxt) 1, REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])), DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i); *} (*>*) (*By default only o_apply is built-in. But in the presence of eta-expansion this means that some terms displayed as (f o g) will be rewritten, and others will not!*) declare o_def [simp] lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" by auto lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" by auto lemma synth_analz_mono: "G<=H ==> synth (analz(G)) <= synth (analz(H))" by (simp add: synth_mono analz_mono) lemma Fake_analz_eq [simp]: "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" apply (drule Fake_analz_insert[of _ _ "H"]) apply (simp add: synth_increasing[THEN Un_absorb2]) apply (drule synth_mono) apply (simp add: synth_idem) apply (blast intro: synth_analz_mono [THEN [2] rev_subsetD]) done text{*Two generalizations of @{text analz_insert_eq}*} lemma gen_analz_insert_eq [rule_format]: "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G"; by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) lemma synth_analz_insert_eq [rule_format]: "X \<in> synth (analz H) ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)"; apply (erule synth.induct) apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) done lemma Fake_parts_sing: "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H"; apply (rule subset_trans) apply (erule_tac [2] Fake_parts_insert) apply (simp add: parts_mono) done lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] method_setup spy_analz = {* Scan.succeed (SIMPLE_METHOD' o spy_analz_tac) *} "for proving the Fake case when analz is involved" method_setup atomic_spy_analz = {* Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac) *} "for debugging spy_analz" method_setup Fake_insert_simp = {* Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac o simpset_of) *} "for debugging spy_analz" end