| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 45827 | 66c68453455c |
| child 51717 | 9e7d1c139569 |
| permissions | -rw-r--r-- |
(* Title: HOL/SET_Protocol/Public_SET.thy Author: Giampaolo Bella Author: Fabio Massacci Author: Lawrence C Paulson *) header{*The Public-Key Theory, Modified for SET*} theory Public_SET imports Event_SET begin subsection{*Symmetric and Asymmetric Keys*} text{*definitions influenced by the wish to assign asymmetric keys - since the beginning - only to RCA and CAs, namely we need a partial function on type Agent*} text{*The SET specs mention two signature keys for CAs - we only have one*} consts publicKey :: "[bool, agent] => key" --{*the boolean is TRUE if a signing key*} abbreviation "pubEK == publicKey False" abbreviation "pubSK == publicKey True" (*BEWARE!! priEK, priSK DON'T WORK with inj, range, image, etc.*) abbreviation "priEK A == invKey (pubEK A)" abbreviation "priSK A == invKey (pubSK A)" text{*By freeness of agents, no two agents have the same key. Since @{term "True\<noteq>False"}, no agent has the same signing and encryption keys.*} specification (publicKey) injective_publicKey: "publicKey b A = publicKey c A' ==> b=c & A=A'" (*<*) apply (rule exI [of _ "%b A. 2 * nat_of_agent A + (if b then 1 else 0)"]) apply (auto simp add: inj_on_def inj_nat_of_agent [THEN inj_eq] split: agent.split) apply (drule_tac f="%x. x mod 2" in arg_cong, simp add: mod_Suc)+ (*or this, but presburger won't abstract out the function applications apply presburger+ *) done (*>*) axiomatization where (*No private key equals any public key (essential to ensure that private keys are private!) *) privateKey_neq_publicKey [iff]: "invKey (publicKey b A) \<noteq> publicKey b' A'" declare privateKey_neq_publicKey [THEN not_sym, iff] subsection{*Initial Knowledge*} text{*This information is not necessary. Each protocol distributes any needed certificates, and anyway our proofs require a formalization of the Spy's knowledge only. However, the initial knowledge is as follows: All agents know RCA's public keys; RCA and CAs know their own respective keys; RCA (has already certified and therefore) knows all CAs public keys; Spy knows all keys of all bad agents.*} overloading initState \<equiv> "initState" begin primrec initState where (*<*) initState_CA: "initState (CA i) = (if i=0 then Key ` ({priEK RCA, priSK RCA} Un pubEK ` (range CA) Un pubSK ` (range CA)) else {Key (priEK (CA i)), Key (priSK (CA i)), Key (pubEK (CA i)), Key (pubSK (CA i)), Key (pubEK RCA), Key (pubSK RCA)})" | initState_Cardholder: "initState (Cardholder i) = {Key (priEK (Cardholder i)), Key (priSK (Cardholder i)), Key (pubEK (Cardholder i)), Key (pubSK (Cardholder i)), Key (pubEK RCA), Key (pubSK RCA)}" | initState_Merchant: "initState (Merchant i) = {Key (priEK (Merchant i)), Key (priSK (Merchant i)), Key (pubEK (Merchant i)), Key (pubSK (Merchant i)), Key (pubEK RCA), Key (pubSK RCA)}" | initState_PG: "initState (PG i) = {Key (priEK (PG i)), Key (priSK (PG i)), Key (pubEK (PG i)), Key (pubSK (PG i)), Key (pubEK RCA), Key (pubSK RCA)}" (*>*) | initState_Spy: "initState Spy = Key ` (invKey ` pubEK ` bad Un invKey ` pubSK ` bad Un range pubEK Un range pubSK)" end text{*Injective mapping from agents to PANs: an agent can have only one card*} consts pan :: "agent => nat" specification (pan) inj_pan: "inj pan" --{*No two agents have the same PAN*} (*<*) apply (rule exI [of _ "nat_of_agent"]) apply (simp add: inj_on_def inj_nat_of_agent [THEN inj_eq]) done (*>*) declare inj_pan [THEN inj_eq, iff] consts XOR :: "nat*nat => nat" --{*no properties are assumed of exclusive-or*} subsection{*Signature Primitives*} definition (* Signature = Message + signed Digest *) sign :: "[key, msg]=>msg" where "sign K X = {|X, Crypt K (Hash X) |}" definition (* Signature Only = signed Digest Only *) signOnly :: "[key, msg]=>msg" where "signOnly K X = Crypt K (Hash X)" definition (* Signature for Certificates = Message + signed Message *) signCert :: "[key, msg]=>msg" where "signCert K X = {|X, Crypt K X |}" definition (* Certification Authority's Certificate. Contains agent name, a key, a number specifying the key's target use, a key to sign the entire certificate. Should prove if signK=priSK RCA and C=CA i, then Ka=pubEK i or pubSK i depending on T ?? *) cert :: "[agent, key, msg, key] => msg" where "cert A Ka T signK = signCert signK {|Agent A, Key Ka, T|}" definition (* Cardholder's Certificate. Contains a PAN, the certified key Ka, the PANSecret PS, a number specifying the target use for Ka, the signing key signK. *) certC :: "[nat, key, nat, msg, key] => msg" where "certC PAN Ka PS T signK = signCert signK {|Hash {|Nonce PS, Pan PAN|}, Key Ka, T|}" (*cert and certA have no repeated elements, so they could be abbreviations, but that's tricky and makes proofs slower*) abbreviation "onlyEnc == Number 0" abbreviation "onlySig == Number (Suc 0)" abbreviation "authCode == Number (Suc (Suc 0))" subsection{*Encryption Primitives*} definition EXcrypt :: "[key,key,msg,msg] => msg" where --{*Extra Encryption*} (*K: the symmetric key EK: the public encryption key*) "EXcrypt K EK M m = {|Crypt K {|M, Hash m|}, Crypt EK {|Key K, m|}|}" definition EXHcrypt :: "[key,key,msg,msg] => msg" where --{*Extra Encryption with Hashing*} (*K: the symmetric key EK: the public encryption key*) "EXHcrypt K EK M m = {|Crypt K {|M, Hash m|}, Crypt EK {|Key K, m, Hash M|}|}" definition Enc :: "[key,key,key,msg] => msg" where --{*Simple Encapsulation with SIGNATURE*} (*SK: the sender's signing key K: the symmetric key EK: the public encryption key*) "Enc SK K EK M = {|Crypt K (sign SK M), Crypt EK (Key K)|}" definition EncB :: "[key,key,key,msg,msg] => msg" where --{*Encapsulation with Baggage. Keys as above, and baggage b.*} "EncB SK K EK M b = {|Enc SK K EK {|M, Hash b|}, b|}" subsection{*Basic Properties of pubEK, pubSK, priEK and priSK *} lemma publicKey_eq_iff [iff]: "(publicKey b A = publicKey b' A') = (b=b' & A=A')" by (blast dest: injective_publicKey) lemma privateKey_eq_iff [iff]: "(invKey (publicKey b A) = invKey (publicKey b' A')) = (b=b' & A=A')" by auto lemma not_symKeys_publicKey [iff]: "publicKey b A \<notin> symKeys" by (simp add: symKeys_def) lemma not_symKeys_privateKey [iff]: "invKey (publicKey b A) \<notin> symKeys" by (simp add: symKeys_def) lemma symKeys_invKey_eq [simp]: "K \<in> symKeys ==> invKey K = K" by (simp add: symKeys_def) lemma symKeys_invKey_iff [simp]: "(invKey K \<in> symKeys) = (K \<in> symKeys)" by (unfold symKeys_def, auto) text{*Can be slow (or even loop) as a simprule*} lemma symKeys_neq_imp_neq: "(K \<in> symKeys) \<noteq> (K' \<in> symKeys) ==> K \<noteq> K'" by blast text{*These alternatives to @{text symKeys_neq_imp_neq} don't seem any better in practice.*} lemma publicKey_neq_symKey: "K \<in> symKeys ==> publicKey b A \<noteq> K" by blast lemma symKey_neq_publicKey: "K \<in> symKeys ==> K \<noteq> publicKey b A" by blast lemma privateKey_neq_symKey: "K \<in> symKeys ==> invKey (publicKey b A) \<noteq> K" by blast lemma symKey_neq_privateKey: "K \<in> symKeys ==> K \<noteq> invKey (publicKey b A)" by blast lemma analz_symKeys_Decrypt: "[| Crypt K X \<in> analz H; K \<in> symKeys; Key K \<in> analz H |] ==> X \<in> analz H" by auto subsection{*"Image" Equations That Hold for Injective Functions *} lemma invKey_image_eq [iff]: "(invKey x \<in> invKey`A) = (x\<in>A)" by auto text{*holds because invKey is injective*} lemma publicKey_image_eq [iff]: "(publicKey b A \<in> publicKey c ` AS) = (b=c & A\<in>AS)" by auto lemma privateKey_image_eq [iff]: "(invKey (publicKey b A) \<in> invKey ` publicKey c ` AS) = (b=c & A\<in>AS)" by auto lemma privateKey_notin_image_publicKey [iff]: "invKey (publicKey b A) \<notin> publicKey c ` AS" by auto lemma publicKey_notin_image_privateKey [iff]: "publicKey b A \<notin> invKey ` publicKey c ` AS" by auto lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}" apply (simp add: keysFor_def) apply (induct_tac "C") apply (auto intro: range_eqI) done text{*for proving @{text new_keys_not_used}*} lemma keysFor_parts_insert: "[| K \<in> keysFor (parts (insert X H)); X \<in> synth (analz H) |] ==> K \<in> keysFor (parts H) | Key (invKey K) \<in> parts H" by (force dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD] analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD] intro: analz_into_parts) lemma Crypt_imp_keysFor [intro]: "[|K \<in> symKeys; Crypt K X \<in> H|] ==> K \<in> keysFor H" by (drule Crypt_imp_invKey_keysFor, simp) text{*Agents see their own private keys!*} lemma privateKey_in_initStateCA [iff]: "Key (invKey (publicKey b A)) \<in> initState A" by (case_tac "A", auto) text{*Agents see their own public keys!*} lemma publicKey_in_initStateCA [iff]: "Key (publicKey b A) \<in> initState A" by (case_tac "A", auto) text{*RCA sees CAs' public keys! *} lemma pubK_CA_in_initState_RCA [iff]: "Key (publicKey b (CA i)) \<in> initState RCA" by auto text{*Spy knows all public keys*} lemma knows_Spy_pubEK_i [iff]: "Key (publicKey b A) \<in> knows Spy evs" apply (induct_tac "evs") apply (simp_all add: imageI knows_Cons split add: event.split) done declare knows_Spy_pubEK_i [THEN analz.Inj, iff] (*needed????*) text{*Spy sees private keys of bad agents! [and obviously public keys too]*} lemma knows_Spy_bad_privateKey [intro!]: "A \<in> bad ==> Key (invKey (publicKey b A)) \<in> knows Spy evs" by (rule initState_subset_knows [THEN subsetD], simp) subsection{*Fresh Nonces for Possibility Theorems*} lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState B)" by (induct_tac "B", auto) lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []" by (simp add: used_Nil) text{*In any trace, there is an upper bound N on the greatest nonce in use.*} lemma Nonce_supply_lemma: "\<exists>N. \<forall>n. N<=n --> Nonce n \<notin> used evs" apply (induct_tac "evs") apply (rule_tac x = 0 in exI) apply (simp_all add: used_Cons split add: event.split, safe) apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+ done lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs" by (rule Nonce_supply_lemma [THEN exE], blast) lemma Nonce_supply: "Nonce (@ N. Nonce N \<notin> used evs) \<notin> used evs" apply (rule Nonce_supply_lemma [THEN exE]) apply (rule someI, fast) done subsection{*Specialized Methods for Possibility Theorems*} ML {* (*Tactic for possibility theorems*) fun possibility_tac ctxt = REPEAT (*omit used_Says so that Nonces start from different traces!*) (ALLGOALS (simp_tac (simpset_of ctxt delsimps [@{thm used_Says}, @{thm used_Notes}])) THEN REPEAT_FIRST (eq_assume_tac ORELSE' resolve_tac [refl, conjI, @{thm Nonce_supply}])) (*For harder protocols (such as SET_CR!), where we have to set up some nonces and keys initially*) fun basic_possibility_tac ctxt = REPEAT (ALLGOALS (asm_simp_tac (simpset_of ctxt setSolver safe_solver)) THEN REPEAT_FIRST (resolve_tac [refl, conjI])) *} method_setup possibility = {* Scan.succeed (SIMPLE_METHOD o possibility_tac) *} "for proving possibility theorems" method_setup basic_possibility = {* Scan.succeed (SIMPLE_METHOD o basic_possibility_tac) *} "for proving possibility theorems" subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*} lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} Un H" by blast lemma insert_Key_image: "insert (Key K) (Key`KK Un C) = Key ` (insert K KK) Un C" by blast text{*Needed for @{text DK_fresh_not_KeyCryptKey}*} lemma publicKey_in_used [iff]: "Key (publicKey b A) \<in> used evs" by auto lemma privateKey_in_used [iff]: "Key (invKey (publicKey b A)) \<in> used evs" by (blast intro!: initState_into_used) text{*Reverse the normal simplification of "image" to build up (not break down) the set of keys. Based on @{text analz_image_freshK_ss}, but simpler.*} lemmas analz_image_keys_simps = simp_thms mem_simps --{*these two allow its use with @{text "only:"}*} image_insert [THEN sym] image_Un [THEN sym] rangeI symKeys_neq_imp_neq insert_Key_singleton insert_Key_image Un_assoc [THEN sym] (*General lemmas proved by Larry*) subsection{*Controlled Unfolding of Abbreviations*} text{*A set is expanded only if a relation is applied to it*} lemma def_abbrev_simp_relation: "A = B ==> (A \<in> X) = (B \<in> X) & (u = A) = (u = B) & (A = u) = (B = u)" by auto text{*A set is expanded only if one of the given functions is applied to it*} lemma def_abbrev_simp_function: "A = B ==> parts (insert A X) = parts (insert B X) & analz (insert A X) = analz (insert B X) & keysFor (insert A X) = keysFor (insert B X)" by auto subsubsection{*Special Simplification Rules for @{term signCert}*} text{*Avoids duplicating X and its components!*} lemma parts_insert_signCert: "parts (insert (signCert K X) H) = insert {|X, Crypt K X|} (parts (insert (Crypt K X) H))" by (simp add: signCert_def insert_commute [of X]) text{*Avoids a case split! [X is always available]*} lemma analz_insert_signCert: "analz (insert (signCert K X) H) = insert {|X, Crypt K X|} (insert (Crypt K X) (analz (insert X H)))" by (simp add: signCert_def insert_commute [of X]) lemma keysFor_insert_signCert: "keysFor (insert (signCert K X) H) = keysFor H" by (simp add: signCert_def) text{*Controlled rewrite rules for @{term signCert}, just the definitions of the others. Encryption primitives are just expanded, despite their huge redundancy!*} lemmas abbrev_simps [simp] = parts_insert_signCert analz_insert_signCert keysFor_insert_signCert sign_def [THEN def_abbrev_simp_relation] sign_def [THEN def_abbrev_simp_function] signCert_def [THEN def_abbrev_simp_relation] signCert_def [THEN def_abbrev_simp_function] certC_def [THEN def_abbrev_simp_relation] certC_def [THEN def_abbrev_simp_function] cert_def [THEN def_abbrev_simp_relation] cert_def [THEN def_abbrev_simp_function] EXcrypt_def [THEN def_abbrev_simp_relation] EXcrypt_def [THEN def_abbrev_simp_function] EXHcrypt_def [THEN def_abbrev_simp_relation] EXHcrypt_def [THEN def_abbrev_simp_function] Enc_def [THEN def_abbrev_simp_relation] Enc_def [THEN def_abbrev_simp_function] EncB_def [THEN def_abbrev_simp_relation] EncB_def [THEN def_abbrev_simp_function] subsubsection{*Elimination Rules for Controlled Rewriting *} lemma Enc_partsE: "!!R. [|Enc SK K EK M \<in> parts H; [|Crypt K (sign SK M) \<in> parts H; Crypt EK (Key K) \<in> parts H|] ==> R|] ==> R" by (unfold Enc_def, blast) lemma EncB_partsE: "!!R. [|EncB SK K EK M b \<in> parts H; [|Crypt K (sign SK {|M, Hash b|}) \<in> parts H; Crypt EK (Key K) \<in> parts H; b \<in> parts H|] ==> R|] ==> R" by (unfold EncB_def Enc_def, blast) lemma EXcrypt_partsE: "!!R. [|EXcrypt K EK M m \<in> parts H; [|Crypt K {|M, Hash m|} \<in> parts H; Crypt EK {|Key K, m|} \<in> parts H|] ==> R|] ==> R" by (unfold EXcrypt_def, blast) subsection{*Lemmas to Simplify Expressions Involving @{term analz} *} lemma analz_knows_absorb: "Key K \<in> analz (knows Spy evs) ==> analz (Key ` (insert K H) \<union> knows Spy evs) = analz (Key ` H \<union> knows Spy evs)" by (simp add: analz_insert_eq Un_upper2 [THEN analz_mono, THEN subsetD]) lemma analz_knows_absorb2: "Key K \<in> analz (knows Spy evs) ==> analz (Key ` (insert X (insert K H)) \<union> knows Spy evs) = analz (Key ` (insert X H) \<union> knows Spy evs)" apply (subst insert_commute) apply (erule analz_knows_absorb) done lemma analz_insert_subset_eq: "[|X \<in> analz (knows Spy evs); knows Spy evs \<subseteq> H|] ==> analz (insert X H) = analz H" apply (rule analz_insert_eq) apply (blast intro: analz_mono [THEN [2] rev_subsetD]) done lemmas analz_insert_simps = analz_insert_subset_eq Un_upper2 subset_insertI [THEN [2] subset_trans] subsection{*Freshness Lemmas*} lemma in_parts_Says_imp_used: "[|Key K \<in> parts {X}; Says A B X \<in> set evs|] ==> Key K \<in> used evs" by (blast intro: parts_trans dest!: Says_imp_knows_Spy [THEN parts.Inj]) text{*A useful rewrite rule with @{term analz_image_keys_simps}*} lemma Crypt_notin_image_Key: "Crypt K X \<notin> Key ` KK" by auto lemma fresh_notin_analz_knows_Spy: "Key K \<notin> used evs ==> Key K \<notin> analz (knows Spy evs)" by (auto dest: analz_into_parts) end