| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 42416 | a8a9f4d79196 |
| child 46950 | d0181abdbdac |
| permissions | -rw-r--r-- |
(* Title: HOL/SPARK/SPARK_Setup.thy Author: Stefan Berghofer Copyright: secunet Security Networks AG Setup for SPARK/Ada verification environment. *) theory SPARK_Setup imports Word uses "Tools/fdl_lexer.ML" "Tools/fdl_parser.ML" ("Tools/spark_vcs.ML") ("Tools/spark_commands.ML") begin text {* SPARK version of div, see section 4.4.1.1 of SPARK Proof Manual *} definition sdiv :: "int \<Rightarrow> int \<Rightarrow> int" (infixl "sdiv" 70) where "a sdiv b = sgn a * sgn b * (\<bar>a\<bar> div \<bar>b\<bar>)" lemma sdiv_minus_dividend: "- a sdiv b = - (a sdiv b)" by (simp add: sdiv_def sgn_if) lemma sdiv_minus_divisor: "a sdiv - b = - (a sdiv b)" by (simp add: sdiv_def sgn_if) text {* Correspondence between HOL's and SPARK's version of div *} lemma sdiv_pos_pos: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a sdiv b = a div b" by (simp add: sdiv_def sgn_if) lemma sdiv_pos_neg: "0 \<le> a \<Longrightarrow> b < 0 \<Longrightarrow> a sdiv b = - (a div - b)" by (simp add: sdiv_def sgn_if) lemma sdiv_neg_pos: "a < 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a sdiv b = - (- a div b)" by (simp add: sdiv_def sgn_if) lemma sdiv_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> a sdiv b = - a div - b" by (simp add: sdiv_def sgn_if) text {* Updating a function at a set of points. Useful for building arrays. *} definition fun_upds :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b" where "fun_upds f xs y z = (if z \<in> xs then y else f z)" syntax "_updsbind" :: "['a, 'a] => updbind" ("(2_ [:=]/ _)") translations "f(xs[:=]y)" == "CONST fun_upds f xs y" lemma fun_upds_in [simp]: "z \<in> xs \<Longrightarrow> (f(xs [:=] y)) z = y" by (simp add: fun_upds_def) lemma fun_upds_notin [simp]: "z \<notin> xs \<Longrightarrow> (f(xs [:=] y)) z = f z" by (simp add: fun_upds_def) lemma upds_singleton [simp]: "f({x} [:=] y) = f(x := y)" by (simp add: fun_eq_iff) text {* Enumeration types *} class spark_enum = ord + finite + fixes pos :: "'a \<Rightarrow> int" assumes range_pos: "range pos = {0..<int (card (UNIV::'a set))}" and less_pos: "(x < y) = (pos x < pos y)" and less_eq_pos: "(x \<le> y) = (pos x \<le> pos y)" begin definition "val = inv pos" definition "succ x = val (pos x + 1)" definition "pred x = val (pos x - 1)" lemma inj_pos: "inj pos" using finite_UNIV by (rule eq_card_imp_inj_on) (simp add: range_pos) lemma val_pos: "val (pos x) = x" unfolding val_def using inj_pos by (rule inv_f_f) lemma pos_val: "z \<in> range pos \<Longrightarrow> pos (val z) = z" unfolding val_def by (rule f_inv_into_f) subclass linorder proof fix x::'a and y show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" by (simp add: less_pos less_eq_pos less_le_not_le) next fix x::'a show "x \<le> x" by (simp add: less_eq_pos) next fix x::'a and y z assume "x \<le> y" and "y \<le> z" then show "x \<le> z" by (simp add: less_eq_pos) next fix x::'a and y assume "x \<le> y" and "y \<le> x" with inj_pos show "x = y" by (auto dest: injD simp add: less_eq_pos) next fix x::'a and y show "x \<le> y \<or> y \<le> x" by (simp add: less_eq_pos linear) qed definition "first_el = val 0" definition "last_el = val (int (card (UNIV::'a set)) - 1)" lemma first_el_smallest: "first_el \<le> x" proof - have "pos x \<in> range pos" by (rule rangeI) then have "pos (val 0) \<le> pos x" by (simp add: range_pos pos_val) then show ?thesis by (simp add: first_el_def less_eq_pos) qed lemma last_el_greatest: "x \<le> last_el" proof - have "pos x \<in> range pos" by (rule rangeI) then have "pos x \<le> pos (val (int (card (UNIV::'a set)) - 1))" by (simp add: range_pos pos_val) then show ?thesis by (simp add: last_el_def less_eq_pos) qed lemma pos_succ: assumes "x \<noteq> last_el" shows "pos (succ x) = pos x + 1" proof - have "x \<le> last_el" by (rule last_el_greatest) with assms have "x < last_el" by simp then have "pos x < pos last_el" by (simp add: less_pos) with rangeI [of pos x] have "pos x + 1 \<in> range pos" by (simp add: range_pos last_el_def pos_val) then show ?thesis by (simp add: succ_def pos_val) qed lemma pos_pred: assumes "x \<noteq> first_el" shows "pos (pred x) = pos x - 1" proof - have "first_el \<le> x" by (rule first_el_smallest) with assms have "first_el < x" by simp then have "pos first_el < pos x" by (simp add: less_pos) with rangeI [of pos x] have "pos x - 1 \<in> range pos" by (simp add: range_pos first_el_def pos_val) then show ?thesis by (simp add: pred_def pos_val) qed lemma succ_val: "x \<in> range pos \<Longrightarrow> succ (val x) = val (x + 1)" by (simp add: succ_def pos_val) lemma pred_val: "x \<in> range pos \<Longrightarrow> pred (val x) = val (x - 1)" by (simp add: pred_def pos_val) end lemma interval_expand: "x < y \<Longrightarrow> (z::int) \<in> {x..<y} = (z = x \<or> z \<in> {x+1..<y})" by auto text {* Load the package *} use "Tools/spark_vcs.ML" use "Tools/spark_commands.ML" setup SPARK_Commands.setup end