| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46504 | cd4832aa2229 |
| child 46853 | 998ec26044c4 |
| permissions | -rw-r--r-- |
(* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel *) header {* Set theory for higher-order logic *} theory Set imports Lattices begin subsection {* Sets as predicates *} typedecl 'a set axiomatization Collect :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set" -- "comprehension" and member :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" -- "membership" where mem_Collect_eq [iff, code_unfold]: "member a (Collect P) = P a" and Collect_mem_eq [simp]: "Collect (\<lambda>x. member x A) = A" notation member ("op :") and member ("(_/ : _)" [50, 51] 50) abbreviation not_member where "not_member x A \<equiv> ~ (x : A)" -- "non-membership" notation not_member ("op ~:") and not_member ("(_/ ~: _)" [50, 51] 50) notation (xsymbols) member ("op \<in>") and member ("(_/ \<in> _)" [50, 51] 50) and not_member ("op \<notin>") and not_member ("(_/ \<notin> _)" [50, 51] 50) notation (HTML output) member ("op \<in>") and member ("(_/ \<in> _)" [50, 51] 50) and not_member ("op \<notin>") and not_member ("(_/ \<notin> _)" [50, 51] 50) text {* Set comprehensions *} syntax "_Coll" :: "pttrn => bool => 'a set" ("(1{_./ _})") translations "{x. P}" == "CONST Collect (%x. P)" syntax "_Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ :/ _./ _})") syntax (xsymbols) "_Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ \<in>/ _./ _})") translations "{x:A. P}" => "{x. x:A & P}" lemma CollectI: "P a \<Longrightarrow> a \<in> {x. P x}" by simp lemma CollectD: "a \<in> {x. P x} \<Longrightarrow> P a" by simp lemma Collect_cong: "(\<And>x. P x = Q x) ==> {x. P x} = {x. Q x}" by simp text {* Simproc for pulling @{text "x=t"} in @{text "{x. \<dots> & x=t & \<dots>}"} to the front (and similarly for @{text "t=x"}): *} simproc_setup defined_Collect ("{x. P x & Q x}") = {* fn _ => Quantifier1.rearrange_Collect (rtac @{thm Collect_cong} 1 THEN rtac @{thm iffI} 1 THEN ALLGOALS (EVERY' [REPEAT_DETERM o etac @{thm conjE}, DEPTH_SOLVE_1 o ares_tac @{thms conjI}])) *} lemmas CollectE = CollectD [elim_format] lemma set_eqI: assumes "\<And>x. x \<in> A \<longleftrightarrow> x \<in> B" shows "A = B" proof - from assms have "{x. x \<in> A} = {x. x \<in> B}" by simp then show ?thesis by simp qed lemma set_eq_iff [no_atp]: "A = B \<longleftrightarrow> (\<forall>x. x \<in> A \<longleftrightarrow> x \<in> B)" by (auto intro:set_eqI) text {* Lifting of predicate class instances *} instantiation set :: (type) boolean_algebra begin definition less_eq_set where "less_eq_set A B = less_eq (\<lambda>x. member x A) (\<lambda>x. member x B)" definition less_set where "less_set A B = less (\<lambda>x. member x A) (\<lambda>x. member x B)" definition inf_set where "inf_set A B = Collect (inf (\<lambda>x. member x A) (\<lambda>x. member x B))" definition sup_set where "sup_set A B = Collect (sup (\<lambda>x. member x A) (\<lambda>x. member x B))" definition bot_set where "bot = Collect bot" definition top_set where "top = Collect top" definition uminus_set where "uminus A = Collect (uminus (\<lambda>x. member x A))" definition minus_set where "minus_set A B = Collect (minus (\<lambda>x. member x A) (\<lambda>x. member x B))" instance proof qed (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def bot_set_def top_set_def uminus_set_def minus_set_def less_le_not_le inf_compl_bot sup_compl_top sup_inf_distrib1 diff_eq set_eqI fun_eq_iff) end text {* Set enumerations *} abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" syntax "_Finset" :: "args => 'a set" ("{(_)}") translations "{x, xs}" == "CONST insert x {xs}" "{x}" == "CONST insert x {}" subsection {* Subsets and bounded quantifiers *} abbreviation subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset \<equiv> less" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" notation (output) subset ("op <") and subset ("(_/ < _)" [50, 51] 50) and subset_eq ("op <=") and subset_eq ("(_/ <= _)" [50, 51] 50) notation (xsymbols) subset ("op \<subset>") and subset ("(_/ \<subset> _)" [50, 51] 50) and subset_eq ("op \<subseteq>") and subset_eq ("(_/ \<subseteq> _)" [50, 51] 50) notation (HTML output) subset ("op \<subset>") and subset ("(_/ \<subset> _)" [50, 51] 50) and subset_eq ("op \<subseteq>") and subset_eq ("(_/ \<subseteq> _)" [50, 51] 50) abbreviation (input) supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "supset \<equiv> greater" abbreviation (input) supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "supset_eq \<equiv> greater_eq" notation (xsymbols) supset ("op \<supset>") and supset ("(_/ \<supset> _)" [50, 51] 50) and supset_eq ("op \<supseteq>") and supset_eq ("(_/ \<supseteq> _)" [50, 51] 50) definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)" -- "bounded universal quantifiers" definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)" -- "bounded existential quantifiers" syntax "_Ball" :: "pttrn => 'a set => bool => bool" ("(3ALL _:_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3EX _:_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3EX! _:_./ _)" [0, 0, 10] 10) "_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST _:_./ _)" [0, 0, 10] 10) syntax (HOL) "_Ball" :: "pttrn => 'a set => bool => bool" ("(3! _:_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3? _:_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3?! _:_./ _)" [0, 0, 10] 10) syntax (xsymbols) "_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10) "_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10) syntax (HTML output) "_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10) "_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10) "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10) translations "ALL x:A. P" == "CONST Ball A (%x. P)" "EX x:A. P" == "CONST Bex A (%x. P)" "EX! x:A. P" => "EX! x. x:A & P" "LEAST x:A. P" => "LEAST x. x:A & P" syntax (output) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3EX! _<=_./ _)" [0, 0, 10] 10) syntax (xsymbols) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10) syntax (HOL output) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3?! _<=_./ _)" [0, 0, 10] 10) syntax (HTML output) "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10) "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10) "_setleAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10) translations "\<forall>A\<subset>B. P" => "ALL A. A \<subset> B --> P" "\<exists>A\<subset>B. P" => "EX A. A \<subset> B & P" "\<forall>A\<subseteq>B. P" => "ALL A. A \<subseteq> B --> P" "\<exists>A\<subseteq>B. P" => "EX A. A \<subseteq> B & P" "\<exists>!A\<subseteq>B. P" => "EX! A. A \<subseteq> B & P" print_translation {* let val All_binder = Mixfix.binder_name @{const_syntax All}; val Ex_binder = Mixfix.binder_name @{const_syntax Ex}; val impl = @{const_syntax HOL.implies}; val conj = @{const_syntax HOL.conj}; val sbset = @{const_syntax subset}; val sbset_eq = @{const_syntax subset_eq}; val trans = [((All_binder, impl, sbset), @{syntax_const "_setlessAll"}), ((All_binder, impl, sbset_eq), @{syntax_const "_setleAll"}), ((Ex_binder, conj, sbset), @{syntax_const "_setlessEx"}), ((Ex_binder, conj, sbset_eq), @{syntax_const "_setleEx"})]; fun mk v v' c n P = if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) then Syntax.const c $ Syntax_Trans.mark_bound v' $ n $ P else raise Match; fun tr' q = (q, fn [Const (@{syntax_const "_bound"}, _) $ Free (v, Type (@{type_name set}, _)), Const (c, _) $ (Const (d, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (v', _)) $ n) $ P] => (case AList.lookup (op =) trans (q, c, d) of NONE => raise Match | SOME l => mk v v' l n P) | _ => raise Match); in [tr' All_binder, tr' Ex_binder] end *} text {* \medskip Translate between @{text "{e | x1...xn. P}"} and @{text "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is only translated if @{text "[0..n] subset bvs(e)"}. *} syntax "_Setcompr" :: "'a => idts => bool => 'a set" ("(1{_ |/_./ _})") parse_translation {* let val ex_tr = snd (Syntax_Trans.mk_binder_tr ("EX ", @{const_syntax Ex})); fun nvars (Const (@{syntax_const "_idts"}, _) $ _ $ idts) = nvars idts + 1 | nvars _ = 1; fun setcompr_tr [e, idts, b] = let val eq = Syntax.const @{const_syntax HOL.eq} $ Bound (nvars idts) $ e; val P = Syntax.const @{const_syntax HOL.conj} $ eq $ b; val exP = ex_tr [idts, P]; in Syntax.const @{const_syntax Collect} $ absdummy dummyT exP end; in [(@{syntax_const "_Setcompr"}, setcompr_tr)] end; *} print_translation {* [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"}, Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"}] *} -- {* to avoid eta-contraction of body *} print_translation {* let val ex_tr' = snd (Syntax_Trans.mk_binder_tr' (@{const_syntax Ex}, "DUMMY")); fun setcompr_tr' [Abs (abs as (_, _, P))] = let fun check (Const (@{const_syntax Ex}, _) $ Abs (_, _, P), n) = check (P, n + 1) | check (Const (@{const_syntax HOL.conj}, _) $ (Const (@{const_syntax HOL.eq}, _) $ Bound m $ e) $ P, n) = n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso subset (op =) (0 upto (n - 1), add_loose_bnos (e, 0, [])) | check _ = false; fun tr' (_ $ abs) = let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs] in Syntax.const @{syntax_const "_Setcompr"} $ e $ idts $ Q end; in if check (P, 0) then tr' P else let val (x as _ $ Free(xN, _), t) = Syntax_Trans.atomic_abs_tr' abs; val M = Syntax.const @{syntax_const "_Coll"} $ x $ t; in case t of Const (@{const_syntax HOL.conj}, _) $ (Const (@{const_syntax Set.member}, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (yN, _)) $ A) $ P => if xN = yN then Syntax.const @{syntax_const "_Collect"} $ x $ A $ P else M | _ => M end end; in [(@{const_syntax Collect}, setcompr_tr')] end; *} simproc_setup defined_Bex ("EX x:A. P x & Q x") = {* let val unfold_bex_tac = unfold_tac @{thms Bex_def}; fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac; in fn _ => fn ss => Quantifier1.rearrange_bex (prove_bex_tac ss) ss end *} simproc_setup defined_All ("ALL x:A. P x --> Q x") = {* let val unfold_ball_tac = unfold_tac @{thms Ball_def}; fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac; in fn _ => fn ss => Quantifier1.rearrange_ball (prove_ball_tac ss) ss end *} lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" by (simp add: Ball_def) lemmas strip = impI allI ballI lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" by (simp add: Ball_def) text {* Gives better instantiation for bound: *} declaration {* fn _ => Classical.map_cs (fn cs => cs addbefore ("bspec", dtac @{thm bspec} THEN' assume_tac)) *} ML {* structure Simpdata = struct open Simpdata; val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs; end; open Simpdata; *} declaration {* fn _ => Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs)) *} lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" by (unfold Ball_def) blast lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" -- {* Normally the best argument order: @{prop "P x"} constrains the choice of @{prop "x:A"}. *} by (unfold Bex_def) blast lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" -- {* The best argument order when there is only one @{prop "x:A"}. *} by (unfold Bex_def) blast lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" by (unfold Bex_def) blast lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" by (unfold Bex_def) blast lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)" -- {* Trival rewrite rule. *} by (simp add: Ball_def) lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" -- {* Dual form for existentials. *} by (simp add: Bex_def) lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" by blast lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" by blast lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" by blast lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" by blast lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)" by blast lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)" by blast lemma ball_conj_distrib: "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x))" by blast lemma bex_disj_distrib: "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x))" by blast text {* Congruence rules *} lemma ball_cong: "A = B ==> (!!x. x:B ==> P x = Q x) ==> (ALL x:A. P x) = (ALL x:B. Q x)" by (simp add: Ball_def) lemma strong_ball_cong [cong]: "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> (ALL x:A. P x) = (ALL x:B. Q x)" by (simp add: simp_implies_def Ball_def) lemma bex_cong: "A = B ==> (!!x. x:B ==> P x = Q x) ==> (EX x:A. P x) = (EX x:B. Q x)" by (simp add: Bex_def cong: conj_cong) lemma strong_bex_cong [cong]: "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> (EX x:A. P x) = (EX x:B. Q x)" by (simp add: simp_implies_def Bex_def cong: conj_cong) subsection {* Basic operations *} subsubsection {* Subsets *} lemma subsetI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B) \<Longrightarrow> A \<subseteq> B" by (simp add: less_eq_set_def le_fun_def) text {* \medskip Map the type @{text "'a set => anything"} to just @{typ 'a}; for overloading constants whose first argument has type @{typ "'a set"}. *} lemma subsetD [elim, intro?]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" by (simp add: less_eq_set_def le_fun_def) -- {* Rule in Modus Ponens style. *} lemma rev_subsetD [no_atp,intro?]: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" -- {* The same, with reversed premises for use with @{text erule} -- cf @{text rev_mp}. *} by (rule subsetD) text {* \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}. *} lemma subsetCE [no_atp,elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" -- {* Classical elimination rule. *} by (auto simp add: less_eq_set_def le_fun_def) lemma subset_eq [code, no_atp]: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast lemma contra_subsetD [no_atp]: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" by blast lemma subset_refl: "A \<subseteq> A" by (fact order_refl) (* already [iff] *) lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" by (fact order_trans) lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B" by (rule subsetD) lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B" by (rule subsetD) lemma subset_not_subset_eq [code]: "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A" by (fact less_le_not_le) lemma eq_mem_trans: "a=b ==> b \<in> A ==> a \<in> A" by simp lemmas basic_trans_rules [trans] = order_trans_rules set_rev_mp set_mp eq_mem_trans subsubsection {* Equality *} lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" -- {* Anti-symmetry of the subset relation. *} by (iprover intro: set_eqI subsetD) text {* \medskip Equality rules from ZF set theory -- are they appropriate here? *} lemma equalityD1: "A = B ==> A \<subseteq> B" by simp lemma equalityD2: "A = B ==> B \<subseteq> A" by simp text {* \medskip Be careful when adding this to the claset as @{text subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{} \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}! *} lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" by simp lemma equalityCE [elim]: "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" by blast lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" by simp lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" by simp subsubsection {* The empty set *} lemma empty_def: "{} = {x. False}" by (simp add: bot_set_def bot_fun_def) lemma empty_iff [simp]: "(c : {}) = False" by (simp add: empty_def) lemma emptyE [elim!]: "a : {} ==> P" by simp lemma empty_subsetI [iff]: "{} \<subseteq> A" -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *} by blast lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}" by blast lemma equals0D: "A = {} ==> a \<notin> A" -- {* Use for reasoning about disjointness: @{text "A Int B = {}"} *} by blast lemma ball_empty [simp]: "Ball {} P = True" by (simp add: Ball_def) lemma bex_empty [simp]: "Bex {} P = False" by (simp add: Bex_def) subsubsection {* The universal set -- UNIV *} abbreviation UNIV :: "'a set" where "UNIV \<equiv> top" lemma UNIV_def: "UNIV = {x. True}" by (simp add: top_set_def top_fun_def) lemma UNIV_I [simp]: "x : UNIV" by (simp add: UNIV_def) declare UNIV_I [intro] -- {* unsafe makes it less likely to cause problems *} lemma UNIV_witness [intro?]: "EX x. x : UNIV" by simp lemma subset_UNIV: "A \<subseteq> UNIV" by (fact top_greatest) (* already simp *) text {* \medskip Eta-contracting these two rules (to remove @{text P}) causes them to be ignored because of their interaction with congruence rules. *} lemma ball_UNIV [simp]: "Ball UNIV P = All P" by (simp add: Ball_def) lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" by (simp add: Bex_def) lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A" by auto lemma UNIV_not_empty [iff]: "UNIV ~= {}" by (blast elim: equalityE) subsubsection {* The Powerset operator -- Pow *} definition Pow :: "'a set => 'a set set" where Pow_def: "Pow A = {B. B \<le> A}" lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" by (simp add: Pow_def) lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" by (simp add: Pow_def) lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" by (simp add: Pow_def) lemma Pow_bottom: "{} \<in> Pow B" by simp lemma Pow_top: "A \<in> Pow A" by simp lemma Pow_not_empty: "Pow A \<noteq> {}" using Pow_top by blast subsubsection {* Set complement *} lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)" by (simp add: fun_Compl_def uminus_set_def) lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A" by (simp add: fun_Compl_def uminus_set_def) blast text {* \medskip This form, with negated conclusion, works well with the Classical prover. Negated assumptions behave like formulae on the right side of the notional turnstile ... *} lemma ComplD [dest!]: "c : -A ==> c~:A" by simp lemmas ComplE = ComplD [elim_format] lemma Compl_eq: "- A = {x. ~ x : A}" by blast subsubsection {* Binary intersection *} abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where "op Int \<equiv> inf" notation (xsymbols) inter (infixl "\<inter>" 70) notation (HTML output) inter (infixl "\<inter>" 70) lemma Int_def: "A \<inter> B = {x. x \<in> A \<and> x \<in> B}" by (simp add: inf_set_def inf_fun_def) lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" by (unfold Int_def) blast lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" by simp lemma IntD1: "c : A Int B ==> c:A" by simp lemma IntD2: "c : A Int B ==> c:B" by simp lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" by simp lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B" by (fact mono_inf) subsubsection {* Binary union *} abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where "union \<equiv> sup" notation (xsymbols) union (infixl "\<union>" 65) notation (HTML output) union (infixl "\<union>" 65) lemma Un_def: "A \<union> B = {x. x \<in> A \<or> x \<in> B}" by (simp add: sup_set_def sup_fun_def) lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" by (unfold Un_def) blast lemma UnI1 [elim?]: "c:A ==> c : A Un B" by simp lemma UnI2 [elim?]: "c:B ==> c : A Un B" by simp text {* \medskip Classical introduction rule: no commitment to @{prop A} vs @{prop B}. *} lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" by auto lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" by (unfold Un_def) blast lemma insert_def: "insert a B = {x. x = a} \<union> B" by (simp add: insert_compr Un_def) lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)" by (fact mono_sup) subsubsection {* Set difference *} lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" by (simp add: minus_set_def fun_diff_def) lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B" by simp lemma DiffD1: "c : A - B ==> c : A" by simp lemma DiffD2: "c : A - B ==> c : B ==> P" by simp lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P" by simp lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast lemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)" by blast subsubsection {* Augmenting a set -- @{const insert} *} lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)" by (unfold insert_def) blast lemma insertI1: "a : insert a B" by simp lemma insertI2: "a : B ==> a : insert b B" by simp lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" by (unfold insert_def) blast lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" -- {* Classical introduction rule. *} by auto lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)" by auto lemma set_insert: assumes "x \<in> A" obtains B where "A = insert x B" and "x \<notin> B" proof from assms show "A = insert x (A - {x})" by blast next show "x \<notin> A - {x}" by blast qed lemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)" by auto lemma insert_eq_iff: assumes "a \<notin> A" "b \<notin> B" shows "insert a A = insert b B \<longleftrightarrow> (if a=b then A=B else \<exists>C. A = insert b C \<and> b \<notin> C \<and> B = insert a C \<and> a \<notin> C)" (is "?L \<longleftrightarrow> ?R") proof assume ?L show ?R proof cases assume "a=b" with assms `?L` show ?R by (simp add: insert_ident) next assume "a\<noteq>b" let ?C = "A - {b}" have "A = insert b ?C \<and> b \<notin> ?C \<and> B = insert a ?C \<and> a \<notin> ?C" using assms `?L` `a\<noteq>b` by auto thus ?R using `a\<noteq>b` by auto qed next assume ?R thus ?L by (auto split: if_splits) qed subsubsection {* Singletons, using insert *} lemma singletonI [intro!,no_atp]: "a : {a}" -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *} by (rule insertI1) lemma singletonD [dest!,no_atp]: "b : {a} ==> b = a" by blast lemmas singletonE = singletonD [elim_format] lemma singleton_iff: "(b : {a}) = (b = a)" by blast lemma singleton_inject [dest!]: "{a} = {b} ==> a = b" by blast lemma singleton_insert_inj_eq [iff,no_atp]: "({b} = insert a A) = (a = b & A \<subseteq> {b})" by blast lemma singleton_insert_inj_eq' [iff,no_atp]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})" by blast lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}" by fast lemma singleton_conv [simp]: "{x. x = a} = {a}" by blast lemma singleton_conv2 [simp]: "{x. a = x} = {a}" by blast lemma diff_single_insert: "A - {x} \<subseteq> B ==> A \<subseteq> insert x B" by blast lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)" by (blast elim: equalityE) subsubsection {* Image of a set under a function *} text {* Frequently @{term b} does not have the syntactic form of @{term "f x"}. *} definition image :: "('a => 'b) => 'a set => 'b set" (infixr "`" 90) where image_def [no_atp]: "f ` A = {y. EX x:A. y = f(x)}" abbreviation range :: "('a => 'b) => 'b set" where -- "of function" "range f == f ` UNIV" lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A" by (unfold image_def) blast lemma imageI: "x : A ==> f x : f ` A" by (rule image_eqI) (rule refl) lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A" -- {* This version's more effective when we already have the required @{term x}. *} by (unfold image_def) blast lemma imageE [elim!]: "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P" -- {* The eta-expansion gives variable-name preservation. *} by (unfold image_def) blast lemma image_Un: "f`(A Un B) = f`A Un f`B" by blast lemma image_iff: "(z : f`A) = (EX x:A. z = f x)" by blast lemma image_subset_iff [no_atp]: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)" -- {* This rewrite rule would confuse users if made default. *} by blast lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)" apply safe prefer 2 apply fast apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast) done lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B" -- {* Replaces the three steps @{text subsetI}, @{text imageE}, @{text hypsubst}, but breaks too many existing proofs. *} by blast text {* \medskip Range of a function -- just a translation for image! *} lemma image_ident [simp]: "(%x. x) ` Y = Y" by blast lemma range_eqI: "b = f x ==> b \<in> range f" by simp lemma rangeI: "f x \<in> range f" by simp lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P" by blast subsubsection {* Some rules with @{text "if"} *} text{* Elimination of @{text"{x. \<dots> & x=t & \<dots>}"}. *} lemma Collect_conv_if: "{x. x=a & P x} = (if P a then {a} else {})" by auto lemma Collect_conv_if2: "{x. a=x & P x} = (if P a then {a} else {})" by auto text {* Rewrite rules for boolean case-splitting: faster than @{text "split_if [split]"}. *} lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))" by (rule split_if) lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))" by (rule split_if) text {* Split ifs on either side of the membership relation. Not for @{text "[simp]"} -- can cause goals to blow up! *} lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))" by (rule split_if) lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))" by (rule split_if [where P="%S. a : S"]) lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 (*Would like to add these, but the existing code only searches for the outer-level constant, which in this case is just Set.member; we instead need to use term-nets to associate patterns with rules. Also, if a rule fails to apply, then the formula should be kept. [("uminus", Compl_iff RS iffD1), ("minus", [Diff_iff RS iffD1]), ("Int", [IntD1,IntD2]), ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])] *) subsection {* Further operations and lemmas *} subsubsection {* The ``proper subset'' relation *} lemma psubsetI [intro!,no_atp]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" by (unfold less_le) blast lemma psubsetE [elim!,no_atp]: "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R" by (unfold less_le) blast lemma psubset_insert_iff: "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)" by (auto simp add: less_le subset_insert_iff) lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" by (simp only: less_le) lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" by (simp add: psubset_eq) lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C" apply (unfold less_le) apply (auto dest: subset_antisym) done lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B" apply (unfold less_le) apply (auto dest: subsetD) done lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" by (auto simp add: psubset_eq) lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" by (auto simp add: psubset_eq) lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)" by (unfold less_le) blast lemma atomize_ball: "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" by (simp only: Ball_def atomize_all atomize_imp) lemmas [symmetric, rulify] = atomize_ball and [symmetric, defn] = atomize_ball lemma image_Pow_mono: assumes "f ` A \<le> B" shows "(image f) ` (Pow A) \<le> Pow B" using assms by blast lemma image_Pow_surj: assumes "f ` A = B" shows "(image f) ` (Pow A) = Pow B" using assms unfolding Pow_def proof(auto) fix Y assume *: "Y \<le> f ` A" obtain X where X_def: "X = {x \<in> A. f x \<in> Y}" by blast have "f ` X = Y \<and> X \<le> A" unfolding X_def using * by auto thus "Y \<in> (image f) ` {X. X \<le> A}" by blast qed subsubsection {* Derived rules involving subsets. *} text {* @{text insert}. *} lemma subset_insertI: "B \<subseteq> insert a B" by (rule subsetI) (erule insertI2) lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" by blast lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" by blast text {* \medskip Finite Union -- the least upper bound of two sets. *} lemma Un_upper1: "A \<subseteq> A \<union> B" by (fact sup_ge1) lemma Un_upper2: "B \<subseteq> A \<union> B" by (fact sup_ge2) lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" by (fact sup_least) text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *} lemma Int_lower1: "A \<inter> B \<subseteq> A" by (fact inf_le1) lemma Int_lower2: "A \<inter> B \<subseteq> B" by (fact inf_le2) lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" by (fact inf_greatest) text {* \medskip Set difference. *} lemma Diff_subset: "A - B \<subseteq> A" by blast lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)" by blast subsubsection {* Equalities involving union, intersection, inclusion, etc. *} text {* @{text "{}"}. *} lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})" -- {* supersedes @{text "Collect_False_empty"} *} by auto lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})" by (fact bot_unique) lemma not_psubset_empty [iff]: "\<not> (A < {})" by (fact not_less_bot) (* FIXME: already simp *) lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)" by blast lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)" by blast lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}" by blast lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}" by blast lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}" by blast lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}" by blast text {* \medskip @{text insert}. *} lemma insert_is_Un: "insert a A = {a} Un A" -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *} by blast lemma insert_not_empty [simp]: "insert a A \<noteq> {}" by blast lemmas empty_not_insert = insert_not_empty [symmetric] declare empty_not_insert [simp] lemma insert_absorb: "a \<in> A ==> insert a A = A" -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *} -- {* with \emph{quadratic} running time *} by blast lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" by blast lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" by blast lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" by blast lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *} apply (rule_tac x = "A - {a}" in exI, blast) done lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}" by auto lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" by blast lemma insert_disjoint [simp,no_atp]: "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})" "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)" by auto lemma disjoint_insert [simp,no_atp]: "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})" "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)" by auto text {* \medskip @{text image}. *} lemma image_empty [simp]: "f`{} = {}" by blast lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)" by blast lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}" by auto lemma image_constant_conv: "(%x. c) ` A = (if A = {} then {} else {c})" by auto lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A" by blast lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A" by blast lemma image_is_empty [iff]: "(f`A = {}) = (A = {})" by blast lemma empty_is_image[iff]: "({} = f ` A) = (A = {})" by blast lemma image_Collect [no_atp]: "f ` {x. P x} = {f x | x. P x}" -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS, with its implicit quantifier and conjunction. Also image enjoys better equational properties than does the RHS. *} by blast lemma if_image_distrib [simp]: "(\<lambda>x. if P x then f x else g x) ` S = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))" by (auto simp add: image_def) lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N" by (simp add: image_def) lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" by blast lemma image_diff_subset: "f`A - f`B <= f`(A - B)" by blast text {* \medskip @{text range}. *} lemma full_SetCompr_eq [no_atp]: "{u. \<exists>x. u = f x} = range f" by auto lemma range_composition: "range (\<lambda>x. f (g x)) = f`range g" by (subst image_image, simp) text {* \medskip @{text Int} *} lemma Int_absorb: "A \<inter> A = A" by (fact inf_idem) (* already simp *) lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" by (fact inf_left_idem) lemma Int_commute: "A \<inter> B = B \<inter> A" by (fact inf_commute) lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" by (fact inf_left_commute) lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" by (fact inf_assoc) lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute -- {* Intersection is an AC-operator *} lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" by (fact inf_absorb2) lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" by (fact inf_absorb1) lemma Int_empty_left: "{} \<inter> B = {}" by (fact inf_bot_left) (* already simp *) lemma Int_empty_right: "A \<inter> {} = {}" by (fact inf_bot_right) (* already simp *) lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)" by blast lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)" by blast lemma Int_UNIV_left: "UNIV \<inter> B = B" by (fact inf_top_left) (* already simp *) lemma Int_UNIV_right: "A \<inter> UNIV = A" by (fact inf_top_right) (* already simp *) lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" by (fact inf_sup_distrib1) lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" by (fact inf_sup_distrib2) lemma Int_UNIV [simp,no_atp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" by (fact inf_eq_top_iff) (* already simp *) lemma Int_subset_iff [no_atp, simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" by (fact le_inf_iff) lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)" by blast text {* \medskip @{text Un}. *} lemma Un_absorb: "A \<union> A = A" by (fact sup_idem) (* already simp *) lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B" by (fact sup_left_idem) lemma Un_commute: "A \<union> B = B \<union> A" by (fact sup_commute) lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)" by (fact sup_left_commute) lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)" by (fact sup_assoc) lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute -- {* Union is an AC-operator *} lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B" by (fact sup_absorb2) lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A" by (fact sup_absorb1) lemma Un_empty_left: "{} \<union> B = B" by (fact sup_bot_left) (* already simp *) lemma Un_empty_right: "A \<union> {} = A" by (fact sup_bot_right) (* already simp *) lemma Un_UNIV_left: "UNIV \<union> B = UNIV" by (fact sup_top_left) (* already simp *) lemma Un_UNIV_right: "A \<union> UNIV = UNIV" by (fact sup_top_right) (* already simp *) lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)" by blast lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)" by blast lemma Int_insert_left: "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)" by auto lemma Int_insert_left_if0[simp]: "a \<notin> C \<Longrightarrow> (insert a B) Int C = B \<inter> C" by auto lemma Int_insert_left_if1[simp]: "a \<in> C \<Longrightarrow> (insert a B) Int C = insert a (B Int C)" by auto lemma Int_insert_right: "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)" by auto lemma Int_insert_right_if0[simp]: "a \<notin> A \<Longrightarrow> A Int (insert a B) = A Int B" by auto lemma Int_insert_right_if1[simp]: "a \<in> A \<Longrightarrow> A Int (insert a B) = insert a (A Int B)" by auto lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)" by (fact sup_inf_distrib1) lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)" by (fact sup_inf_distrib2) lemma Un_Int_crazy: "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)" by blast lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)" by (fact le_iff_sup) lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})" by (fact sup_eq_bot_iff) (* FIXME: already simp *) lemma Un_subset_iff [no_atp, simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)" by (fact le_sup_iff) lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A" by blast lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B" by blast text {* \medskip Set complement *} lemma Compl_disjoint [simp]: "A \<inter> -A = {}" by (fact inf_compl_bot) lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}" by (fact compl_inf_bot) lemma Compl_partition: "A \<union> -A = UNIV" by (fact sup_compl_top) lemma Compl_partition2: "-A \<union> A = UNIV" by (fact compl_sup_top) lemma double_complement: "- (-A) = (A::'a set)" by (fact double_compl) (* already simp *) lemma Compl_Un: "-(A \<union> B) = (-A) \<inter> (-B)" by (fact compl_sup) (* already simp *) lemma Compl_Int: "-(A \<inter> B) = (-A) \<union> (-B)" by (fact compl_inf) (* already simp *) lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})" by blast lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)" -- {* Halmos, Naive Set Theory, page 16. *} by blast lemma Compl_UNIV_eq: "-UNIV = {}" by (fact compl_top_eq) (* already simp *) lemma Compl_empty_eq: "-{} = UNIV" by (fact compl_bot_eq) (* already simp *) lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)" by (fact compl_le_compl_iff) (* FIXME: already simp *) lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))" by (fact compl_eq_compl_iff) (* FIXME: already simp *) lemma Compl_insert: "- insert x A = (-A) - {x}" by blast text {* \medskip Bounded quantifiers. The following are not added to the default simpset because (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *} lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))" by blast lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))" by blast text {* \medskip Set difference. *} lemma Diff_eq: "A - B = A \<inter> (-B)" by blast lemma Diff_eq_empty_iff [simp,no_atp]: "(A - B = {}) = (A \<subseteq> B)" by blast lemma Diff_cancel [simp]: "A - A = {}" by blast lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)" by blast lemma Diff_triv: "A \<inter> B = {} ==> A - B = A" by (blast elim: equalityE) lemma empty_Diff [simp]: "{} - A = {}" by blast lemma Diff_empty [simp]: "A - {} = A" by blast lemma Diff_UNIV [simp]: "A - UNIV = {}" by blast lemma Diff_insert0 [simp,no_atp]: "x \<notin> A ==> A - insert x B = A - B" by blast lemma Diff_insert: "A - insert a B = A - B - {a}" -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *} by blast lemma Diff_insert2: "A - insert a B = A - {a} - B" -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *} by blast lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))" by auto lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B" by blast lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A" by blast lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A" by blast lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A" by auto lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}" by blast lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B" by blast lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A" by blast lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B" by blast lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A" by blast lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)" by blast lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)" by blast lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)" by blast lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)" by blast lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)" by blast lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)" by blast lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B" by auto lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B" by blast text {* \medskip Quantification over type @{typ bool}. *} lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x" by (cases x) auto lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False" by (auto intro: bool_induct) lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True" by (cases x) auto lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False" by (auto intro: bool_contrapos) lemma UNIV_bool [no_atp]: "UNIV = {False, True}" by (auto intro: bool_induct) text {* \medskip @{text Pow} *} lemma Pow_empty [simp]: "Pow {} = {{}}" by (auto simp add: Pow_def) lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)" by (blast intro: image_eqI [where ?x = "u - {a}", standard]) lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}" by (blast intro: exI [where ?x = "- u", standard]) lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" by blast lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)" by blast lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B" by blast text {* \medskip Miscellany. *} lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)" by blast lemma subset_iff [no_atp]: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)" by blast lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))" by (unfold less_le) blast lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})" by blast lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})" by blast lemma ball_simps [simp, no_atp]: "\<And>A P Q. (\<forall>x\<in>A. P x \<or> Q) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<or> Q)" "\<And>A P Q. (\<forall>x\<in>A. P \<or> Q x) \<longleftrightarrow> (P \<or> (\<forall>x\<in>A. Q x))" "\<And>A P Q. (\<forall>x\<in>A. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x\<in>A. Q x))" "\<And>A P Q. (\<forall>x\<in>A. P x \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<longrightarrow> Q)" "\<And>P. (\<forall>x\<in>{}. P x) \<longleftrightarrow> True" "\<And>P. (\<forall>x\<in>UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)" "\<And>a B P. (\<forall>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<and> (\<forall>x\<in>B. P x))" "\<And>P Q. (\<forall>x\<in>Collect Q. P x) \<longleftrightarrow> (\<forall>x. Q x \<longrightarrow> P x)" "\<And>A P f. (\<forall>x\<in>f`A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P (f x))" "\<And>A P. (\<not> (\<forall>x\<in>A. P x)) \<longleftrightarrow> (\<exists>x\<in>A. \<not> P x)" by auto lemma bex_simps [simp, no_atp]: "\<And>A P Q. (\<exists>x\<in>A. P x \<and> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<and> Q)" "\<And>A P Q. (\<exists>x\<in>A. P \<and> Q x) \<longleftrightarrow> (P \<and> (\<exists>x\<in>A. Q x))" "\<And>P. (\<exists>x\<in>{}. P x) \<longleftrightarrow> False" "\<And>P. (\<exists>x\<in>UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)" "\<And>a B P. (\<exists>x\<in>insert a B. P x) \<longleftrightarrow> (P a | (\<exists>x\<in>B. P x))" "\<And>P Q. (\<exists>x\<in>Collect Q. P x) \<longleftrightarrow> (\<exists>x. Q x \<and> P x)" "\<And>A P f. (\<exists>x\<in>f`A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P (f x))" "\<And>A P. (\<not>(\<exists>x\<in>A. P x)) \<longleftrightarrow> (\<forall>x\<in>A. \<not> P x)" by auto subsubsection {* Monotonicity of various operations *} lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B" by blast lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B" by blast lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D" by blast lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D" by (fact sup_mono) lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D" by (fact inf_mono) lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D" by blast lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A" by (fact compl_mono) text {* \medskip Monotonicity of implications. *} lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B" apply (rule impI) apply (erule subsetD, assumption) done lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)" by iprover lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)" by iprover lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)" by iprover lemma imp_refl: "P --> P" .. lemma not_mono: "Q --> P ==> ~ P --> ~ Q" by iprover lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)" by iprover lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)" by iprover lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q" by blast lemma Int_Collect_mono: "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q" by blast lemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono Collect_mono in_mono lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c" by iprover subsubsection {* Inverse image of a function *} definition vimage :: "('a => 'b) => 'b set => 'a set" (infixr "-`" 90) where "f -` B == {x. f x : B}" lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)" by (unfold vimage_def) blast lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)" by simp lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B" by (unfold vimage_def) blast lemma vimageI2: "f a : A ==> a : f -` A" by (unfold vimage_def) fast lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P" by (unfold vimage_def) blast lemma vimageD: "a : f -` A ==> f a : A" by (unfold vimage_def) fast lemma vimage_empty [simp]: "f -` {} = {}" by blast lemma vimage_Compl: "f -` (-A) = -(f -` A)" by blast lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)" by blast lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)" by fast lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}" by blast lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q" by blast lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)" -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *} by blast lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" by blast lemma vimage_UNIV [simp]: "f -` UNIV = UNIV" by blast lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B" -- {* monotonicity *} by blast lemma vimage_image_eq [no_atp]: "f -` (f ` A) = {y. EX x:A. f x = f y}" by (blast intro: sym) lemma image_vimage_subset: "f ` (f -` A) <= A" by blast lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" by blast lemma vimage_const [simp]: "((\<lambda>x. c) -` A) = (if c \<in> A then UNIV else {})" by auto lemma vimage_if [simp]: "((\<lambda>x. if x \<in> B then c else d) -` A) = (if c \<in> A then (if d \<in> A then UNIV else B) else if d \<in> A then -B else {})" by (auto simp add: vimage_def) lemma vimage_inter_cong: "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S" by auto lemma vimage_ident [simp]: "(%x. x) -` Y = Y" by blast subsubsection {* Getting the Contents of a Singleton Set *} definition the_elem :: "'a set \<Rightarrow> 'a" where "the_elem X = (THE x. X = {x})" lemma the_elem_eq [simp]: "the_elem {x} = x" by (simp add: the_elem_def) subsubsection {* Least value operator *} lemma Least_mono: "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" -- {* Courtesy of Stephan Merz *} apply clarify apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) apply (rule LeastI2_order) apply (auto elim: monoD intro!: order_antisym) done subsubsection {* Monad operation *} definition bind :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where "bind A f = {x. \<exists>B \<in> f`A. x \<in> B}" hide_const (open) bind lemma bind_bind: fixes A :: "'a set" shows "Set.bind (Set.bind A B) C = Set.bind A (\<lambda>x. Set.bind (B x) C)" by (auto simp add: bind_def) lemma empty_bind [simp]: "Set.bind {} f = {}" by (simp add: bind_def) lemma nonempty_bind_const: "A \<noteq> {} \<Longrightarrow> Set.bind A (\<lambda>_. B) = B" by (auto simp add: bind_def) lemma bind_const: "Set.bind A (\<lambda>_. B) = (if A = {} then {} else B)" by (auto simp add: bind_def) subsubsection {* Operations for execution *} definition is_empty :: "'a set \<Rightarrow> bool" where [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}" hide_const (open) is_empty definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where [code_abbrev]: "remove x A = A - {x}" hide_const (open) remove lemma member_remove [simp]: "x \<in> Set.remove y A \<longleftrightarrow> x \<in> A \<and> x \<noteq> y" by (simp add: remove_def) definition project :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where [code_abbrev]: "project P A = {a \<in> A. P a}" hide_const (open) project lemma member_project [simp]: "x \<in> Set.project P A \<longleftrightarrow> x \<in> A \<and> P x" by (simp add: project_def) instantiation set :: (equal) equal begin definition "HOL.equal A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A" instance proof qed (auto simp add: equal_set_def) end text {* Misc *} hide_const (open) member not_member lemmas equalityI = subset_antisym ML {* val Ball_def = @{thm Ball_def} val Bex_def = @{thm Bex_def} val CollectD = @{thm CollectD} val CollectE = @{thm CollectE} val CollectI = @{thm CollectI} val Collect_conj_eq = @{thm Collect_conj_eq} val Collect_mem_eq = @{thm Collect_mem_eq} val IntD1 = @{thm IntD1} val IntD2 = @{thm IntD2} val IntE = @{thm IntE} val IntI = @{thm IntI} val Int_Collect = @{thm Int_Collect} val UNIV_I = @{thm UNIV_I} val UNIV_witness = @{thm UNIV_witness} val UnE = @{thm UnE} val UnI1 = @{thm UnI1} val UnI2 = @{thm UnI2} val ballE = @{thm ballE} val ballI = @{thm ballI} val bexCI = @{thm bexCI} val bexE = @{thm bexE} val bexI = @{thm bexI} val bex_triv = @{thm bex_triv} val bspec = @{thm bspec} val contra_subsetD = @{thm contra_subsetD} val equalityCE = @{thm equalityCE} val equalityD1 = @{thm equalityD1} val equalityD2 = @{thm equalityD2} val equalityE = @{thm equalityE} val equalityI = @{thm equalityI} val imageE = @{thm imageE} val imageI = @{thm imageI} val image_Un = @{thm image_Un} val image_insert = @{thm image_insert} val insert_commute = @{thm insert_commute} val insert_iff = @{thm insert_iff} val mem_Collect_eq = @{thm mem_Collect_eq} val rangeE = @{thm rangeE} val rangeI = @{thm rangeI} val range_eqI = @{thm range_eqI} val subsetCE = @{thm subsetCE} val subsetD = @{thm subsetD} val subsetI = @{thm subsetI} val subset_refl = @{thm subset_refl} val subset_trans = @{thm subset_trans} val vimageD = @{thm vimageD} val vimageE = @{thm vimageE} val vimageI = @{thm vimageI} val vimageI2 = @{thm vimageI2} val vimage_Collect = @{thm vimage_Collect} val vimage_Int = @{thm vimage_Int} val vimage_Un = @{thm vimage_Un} *} end