| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46664 | 1f6c140f9c72 |
| child 50056 | 72efd6b4038d |
| permissions | -rw-r--r-- |
(* Title: HOL/Tools/Predicate_Compile/predicate_compile_compilations.ML Author: Lukas Bulwahn, TU Muenchen Structures for different compilations of the predicate compiler. *) structure Predicate_Comp_Funs = struct fun mk_monadT T = Type (@{type_name Predicate.pred}, [T]) fun dest_monadT (Type (@{type_name Predicate.pred}, [T])) = T | dest_monadT T = raise TYPE ("dest_monadT", [T], []); fun mk_empty T = Const (@{const_name Orderings.bot}, mk_monadT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name Predicate.single}, T --> mk_monadT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name Predicate.bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name sup}; fun mk_if cond = Const (@{const_name Predicate.if_pred}, HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name Predicate.iterate_upto}, [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] ---> mk_monadT T), [f, from, to]) fun mk_not t = let val T = mk_monadT HOLogic.unitT in Const (@{const_name Predicate.not_pred}, T --> T) $ t end fun mk_Enum f = let val T as Type ("fun", [T', _]) = fastype_of f in Const (@{const_name Predicate.Pred}, T --> mk_monadT T') $ f end; fun mk_Eval (f, x) = let val T = dest_monadT (fastype_of f) in Const (@{const_name Predicate.eval}, mk_monadT T --> T --> HOLogic.boolT) $ f $ x end; fun dest_Eval (Const (@{const_name Predicate.eval}, _) $ f $ x) = (f, x) fun mk_map T1 T2 tf tp = Const (@{const_name Predicate.map}, (T1 --> T2) --> mk_monadT T1 --> mk_monadT T2) $ tf $ tp; val compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}; end; structure CPS_Comp_Funs = struct fun mk_monadT T = (T --> @{typ "Code_Evaluation.term list option"}) --> @{typ "Code_Evaluation.term list option"} fun dest_monadT (Type ("fun", [Type ("fun", [T, @{typ "term list option"}]), @{typ "term list option"}])) = T | dest_monadT T = raise TYPE ("dest_monadT", [T], []); fun mk_empty T = Const (@{const_name Quickcheck_Exhaustive.cps_empty}, mk_monadT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name Quickcheck_Exhaustive.cps_single}, T --> mk_monadT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name Quickcheck_Exhaustive.cps_bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name Quickcheck_Exhaustive.cps_plus}; fun mk_if cond = Const (@{const_name Quickcheck_Exhaustive.cps_if}, HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = error "not implemented yet" fun mk_not t = let val T = mk_monadT HOLogic.unitT in Const (@{const_name Quickcheck_Exhaustive.cps_not}, T --> T) $ t end fun mk_Enum f = error "not implemented" fun mk_Eval (f, x) = error "not implemented" fun dest_Eval t = error "not implemented" fun mk_map T1 T2 tf tp = error "not implemented" val compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}; end; structure Pos_Bounded_CPS_Comp_Funs = struct val resultT = @{typ "(bool * Code_Evaluation.term list) option"} fun mk_monadT T = (T --> resultT) --> @{typ "code_numeral"} --> resultT fun dest_monadT (Type ("fun", [Type ("fun", [T, @{typ "(bool * term list) option"}]), @{typ "code_numeral => (bool * term list) option"}])) = T | dest_monadT T = raise TYPE ("dest_monadT", [T], []); fun mk_empty T = Const (@{const_name Quickcheck_Exhaustive.pos_bound_cps_empty}, mk_monadT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name Quickcheck_Exhaustive.pos_bound_cps_single}, T --> mk_monadT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name Quickcheck_Exhaustive.pos_bound_cps_bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name Quickcheck_Exhaustive.pos_bound_cps_plus}; fun mk_if cond = Const (@{const_name Quickcheck_Exhaustive.pos_bound_cps_if}, HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = error "not implemented yet" fun mk_not t = let val nT = @{typ "(unit Quickcheck_Exhaustive.unknown => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued) => code_numeral => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued"} val T = mk_monadT HOLogic.unitT in Const (@{const_name Quickcheck_Exhaustive.pos_bound_cps_not}, nT --> T) $ t end fun mk_Enum f = error "not implemented" fun mk_Eval (f, x) = error "not implemented" fun dest_Eval t = error "not implemented" fun mk_map T1 T2 tf tp = error "not implemented" val compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}; end; structure Neg_Bounded_CPS_Comp_Funs = struct fun mk_monadT T = (Type (@{type_name "Quickcheck_Exhaustive.unknown"}, [T]) --> @{typ "Code_Evaluation.term list Quickcheck_Exhaustive.three_valued"}) --> @{typ "code_numeral => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued"} fun dest_monadT (Type ("fun", [Type ("fun", [Type (@{type_name "Quickcheck_Exhaustive.unknown"}, [T]), @{typ "term list Quickcheck_Exhaustive.three_valued"}]), @{typ "code_numeral => term list Quickcheck_Exhaustive.three_valued"}])) = T | dest_monadT T = raise TYPE ("dest_monadT", [T], []); fun mk_empty T = Const (@{const_name Quickcheck_Exhaustive.neg_bound_cps_empty}, mk_monadT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name Quickcheck_Exhaustive.neg_bound_cps_single}, T --> mk_monadT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name Quickcheck_Exhaustive.neg_bound_cps_bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name Quickcheck_Exhaustive.neg_bound_cps_plus}; fun mk_if cond = Const (@{const_name Quickcheck_Exhaustive.neg_bound_cps_if}, HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = error "not implemented" fun mk_not t = let val T = mk_monadT HOLogic.unitT val pT = @{typ "(unit => (bool * Code_Evaluation.term list) option)"} --> @{typ "code_numeral => (bool * Code_Evaluation.term list) option"} in Const (@{const_name Quickcheck_Exhaustive.neg_bound_cps_not}, pT --> T) $ t end fun mk_Enum f = error "not implemented" fun mk_Eval (f, x) = error "not implemented" fun dest_Eval t = error "not implemented" fun mk_map T1 T2 tf tp = error "not implemented" val compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}; end; structure RandomPredCompFuns = struct fun mk_randompredT T = @{typ Random.seed} --> HOLogic.mk_prodT (Predicate_Comp_Funs.mk_monadT T, @{typ Random.seed}) fun dest_randompredT (Type ("fun", [@{typ Random.seed}, Type (@{type_name Product_Type.prod}, [Type (@{type_name "Predicate.pred"}, [T]), @{typ Random.seed}])])) = T | dest_randompredT T = raise TYPE ("dest_randompredT", [T], []); fun mk_empty T = Const(@{const_name Quickcheck.empty}, mk_randompredT T) fun mk_single t = let val T = fastype_of t in Const (@{const_name Quickcheck.single}, T --> mk_randompredT T) $ t end; fun mk_bind (x, f) = let val T as (Type ("fun", [_, U])) = fastype_of f in Const (@{const_name Quickcheck.bind}, fastype_of x --> T --> U) $ x $ f end val mk_plus = HOLogic.mk_binop @{const_name Quickcheck.union} fun mk_if cond = Const (@{const_name Quickcheck.if_randompred}, HOLogic.boolT --> mk_randompredT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name Quickcheck.iterate_upto}, [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] ---> mk_randompredT T), [f, from, to]) fun mk_not t = let val T = mk_randompredT HOLogic.unitT in Const (@{const_name Quickcheck.not_randompred}, T --> T) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name Quickcheck.map}, (T1 --> T2) --> mk_randompredT T1 --> mk_randompredT T2) $ tf $ tp val compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_randompredT, dest_monadT = dest_randompredT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}; end; structure DSequence_CompFuns = struct fun mk_dseqT T = Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ bool}, Type (@{type_name Option.option}, [Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])])]) fun dest_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ bool}, Type (@{type_name Option.option}, [Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])])])) = T | dest_dseqT T = raise TYPE ("dest_dseqT", [T], []); fun mk_empty T = Const (@{const_name DSequence.empty}, mk_dseqT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name DSequence.single}, T --> mk_dseqT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name DSequence.bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name DSequence.union}; fun mk_if cond = Const (@{const_name DSequence.if_seq}, HOLogic.boolT --> mk_dseqT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = raise Fail "No iterate_upto compilation" fun mk_not t = let val T = mk_dseqT HOLogic.unitT in Const (@{const_name DSequence.not_seq}, T --> T) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name DSequence.map}, (T1 --> T2) --> mk_dseqT T1 --> mk_dseqT T2) $ tf $ tp val compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_dseqT, dest_monadT = dest_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} end; structure New_Pos_DSequence_CompFuns = struct fun mk_pos_dseqT T = @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [T]) fun dest_pos_dseqT (Type ("fun", [@{typ code_numeral}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])) = T | dest_pos_dseqT T = raise TYPE ("dest_pos_dseqT", [T], []); fun mk_empty T = Const (@{const_name New_DSequence.pos_empty}, mk_pos_dseqT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name New_DSequence.pos_single}, T --> mk_pos_dseqT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_DSequence.pos_bind}, fastype_of x --> T --> U) $ x $ f end; fun mk_decr_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_DSequence.pos_decr_bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name New_DSequence.pos_union}; fun mk_if cond = Const (@{const_name New_DSequence.pos_if_seq}, HOLogic.boolT --> mk_pos_dseqT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = raise Fail "No iterate_upto compilation" fun mk_not t = let val pT = mk_pos_dseqT HOLogic.unitT val nT = @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [@{typ unit}])]) in Const (@{const_name New_DSequence.pos_not_seq}, nT --> pT) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name New_DSequence.pos_map}, (T1 --> T2) --> mk_pos_dseqT T1 --> mk_pos_dseqT T2) $ tf $ tp val depth_limited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_pos_dseqT, dest_monadT = dest_pos_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} val depth_unlimited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_pos_dseqT, dest_monadT = dest_pos_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} end; structure New_Neg_DSequence_CompFuns = struct fun mk_neg_dseqT T = @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])]) fun dest_neg_dseqT (Type ("fun", [@{typ code_numeral}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])])])) = T | dest_neg_dseqT T = raise TYPE ("dest_neg_dseqT", [T], []); fun mk_empty T = Const (@{const_name New_DSequence.neg_empty}, mk_neg_dseqT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name New_DSequence.neg_single}, T --> mk_neg_dseqT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_DSequence.neg_bind}, fastype_of x --> T --> U) $ x $ f end; fun mk_decr_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_DSequence.neg_decr_bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name New_DSequence.neg_union}; fun mk_if cond = Const (@{const_name New_DSequence.neg_if_seq}, HOLogic.boolT --> mk_neg_dseqT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = raise Fail "No iterate_upto compilation" fun mk_not t = let val nT = mk_neg_dseqT HOLogic.unitT val pT = @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [@{typ unit}]) in Const (@{const_name New_DSequence.neg_not_seq}, pT --> nT) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name New_DSequence.neg_map}, (T1 --> T2) --> mk_neg_dseqT T1 --> mk_neg_dseqT T2) $ tf $ tp val depth_limited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_neg_dseqT, dest_monadT = dest_neg_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} val depth_unlimited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_neg_dseqT, dest_monadT = dest_neg_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} end; structure New_Pos_Random_Sequence_CompFuns = struct fun mk_pos_random_dseqT T = @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [T]) fun dest_pos_random_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ Random.seed}, Type ("fun", [@{typ code_numeral}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [T])])])])])) = T | dest_pos_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], []); fun mk_empty T = Const (@{const_name New_Random_Sequence.pos_empty}, mk_pos_random_dseqT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name New_Random_Sequence.pos_single}, T --> mk_pos_random_dseqT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_Random_Sequence.pos_bind}, fastype_of x --> T --> U) $ x $ f end; fun mk_decr_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_Random_Sequence.pos_decr_bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name New_Random_Sequence.pos_union}; fun mk_if cond = Const (@{const_name New_Random_Sequence.pos_if_random_dseq}, HOLogic.boolT --> mk_pos_random_dseqT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name New_Random_Sequence.pos_iterate_upto}, [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] ---> mk_pos_random_dseqT T), [f, from, to]) fun mk_not t = let val pT = mk_pos_random_dseqT HOLogic.unitT val nT = @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [@{typ unit}])]) in Const (@{const_name New_Random_Sequence.pos_not_random_dseq}, nT --> pT) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name New_Random_Sequence.pos_map}, (T1 --> T2) --> mk_pos_random_dseqT T1 --> mk_pos_random_dseqT T2) $ tf $ tp val depth_limited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_pos_random_dseqT, dest_monadT = dest_pos_random_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} val depth_unlimited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_pos_random_dseqT, dest_monadT = dest_pos_random_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} end; structure New_Neg_Random_Sequence_CompFuns = struct fun mk_neg_random_dseqT T = @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])]) fun dest_neg_random_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ Random.seed}, Type ("fun", [@{typ code_numeral}, Type (@{type_name Lazy_Sequence.lazy_sequence}, [Type (@{type_name Option.option}, [T])])])])])])) = T | dest_neg_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], []); fun mk_empty T = Const (@{const_name New_Random_Sequence.neg_empty}, mk_neg_random_dseqT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name New_Random_Sequence.neg_single}, T --> mk_neg_random_dseqT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_Random_Sequence.neg_bind}, fastype_of x --> T --> U) $ x $ f end; fun mk_decr_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name New_Random_Sequence.neg_decr_bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name New_Random_Sequence.neg_union}; fun mk_if cond = Const (@{const_name New_Random_Sequence.neg_if_random_dseq}, HOLogic.boolT --> mk_neg_random_dseqT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = list_comb (Const (@{const_name New_Random_Sequence.neg_iterate_upto}, [@{typ code_numeral} --> T, @{typ code_numeral}, @{typ code_numeral}] ---> mk_neg_random_dseqT T), [f, from, to]) fun mk_not t = let val nT = mk_neg_random_dseqT HOLogic.unitT val pT = @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> @{typ code_numeral} --> Type (@{type_name Lazy_Sequence.lazy_sequence}, [@{typ unit}]) in Const (@{const_name New_Random_Sequence.neg_not_random_dseq}, pT --> nT) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name New_Random_Sequence.neg_map}, (T1 --> T2) --> mk_neg_random_dseqT T1 --> mk_neg_random_dseqT T2) $ tf $ tp val depth_limited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_neg_random_dseqT, dest_monadT = dest_neg_random_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} val depth_unlimited_compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_neg_random_dseqT, dest_monadT = dest_neg_random_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} end; structure Random_Sequence_CompFuns = struct fun mk_random_dseqT T = @{typ code_numeral} --> @{typ code_numeral} --> @{typ Random.seed} --> HOLogic.mk_prodT (DSequence_CompFuns.mk_dseqT T, @{typ Random.seed}) fun dest_random_dseqT (Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ code_numeral}, Type ("fun", [@{typ Random.seed}, Type (@{type_name Product_Type.prod}, [T, @{typ Random.seed}])])])])) = DSequence_CompFuns.dest_dseqT T | dest_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], []); fun mk_empty T = Const (@{const_name Random_Sequence.empty}, mk_random_dseqT T); fun mk_single t = let val T = fastype_of t in Const(@{const_name Random_Sequence.single}, T --> mk_random_dseqT T) $ t end; fun mk_bind (x, f) = let val T as Type ("fun", [_, U]) = fastype_of f in Const (@{const_name Random_Sequence.bind}, fastype_of x --> T --> U) $ x $ f end; val mk_plus = HOLogic.mk_binop @{const_name Random_Sequence.union}; fun mk_if cond = Const (@{const_name Random_Sequence.if_random_dseq}, HOLogic.boolT --> mk_random_dseqT HOLogic.unitT) $ cond; fun mk_iterate_upto T (f, from, to) = raise Fail "No iterate_upto compilation" fun mk_not t = let val T = mk_random_dseqT HOLogic.unitT in Const (@{const_name Random_Sequence.not_random_dseq}, T --> T) $ t end fun mk_map T1 T2 tf tp = Const (@{const_name Random_Sequence.map}, (T1 --> T2) --> mk_random_dseqT T1 --> mk_random_dseqT T2) $ tf $ tp val compfuns = Predicate_Compile_Aux.CompilationFuns {mk_monadT = mk_random_dseqT, dest_monadT = dest_random_dseqT, mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if, mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map} end;