| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 46708 | b138dee7bed3 |
| child 46893 | d5bb4c212df1 |
| permissions | -rw-r--r-- |
(* Title: HOL/Tools/inductive.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: Stefan Berghofer and Markus Wenzel, TU Muenchen (Co)Inductive Definition module for HOL. Features: * least or greatest fixedpoints * mutually recursive definitions * definitions involving arbitrary monotone operators * automatically proves introduction and elimination rules Introduction rules have the form [| M Pj ti, ..., Q x, ... |] ==> Pk t where M is some monotone operator (usually the identity) Q x is any side condition on the free variables ti, t are any terms Pj, Pk are two of the predicates being defined in mutual recursion *) signature BASIC_INDUCTIVE = sig type inductive_result = {preds: term list, elims: thm list, raw_induct: thm, induct: thm, inducts: thm list, intrs: thm list, eqs: thm list} val transform_result: morphism -> inductive_result -> inductive_result type inductive_info = {names: string list, coind: bool} * inductive_result val the_inductive: Proof.context -> string -> inductive_info val print_inductives: Proof.context -> unit val get_monos: Proof.context -> thm list val mono_add: attribute val mono_del: attribute val mk_cases: Proof.context -> term -> thm val inductive_forall_def: thm val rulify: thm -> thm val inductive_cases: (Attrib.binding * string list) list -> local_theory -> thm list list * local_theory val inductive_cases_i: (Attrib.binding * term list) list -> local_theory -> thm list list * local_theory type inductive_flags = {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool, no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool} val add_inductive_i: inductive_flags -> ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory -> inductive_result * local_theory val add_inductive: bool -> bool -> (binding * string option * mixfix) list -> (binding * string option * mixfix) list -> (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list -> bool -> local_theory -> inductive_result * local_theory val add_inductive_global: inductive_flags -> ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list -> thm list -> theory -> inductive_result * theory val arities_of: thm -> (string * int) list val params_of: thm -> term list val partition_rules: thm -> thm list -> (string * thm list) list val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list val unpartition_rules: thm list -> (string * 'a list) list -> 'a list val infer_intro_vars: thm -> int -> thm list -> term list list val setup: theory -> theory end; signature INDUCTIVE = sig include BASIC_INDUCTIVE type add_ind_def = inductive_flags -> term list -> (Attrib.binding * term) list -> thm list -> term list -> (binding * mixfix) list -> local_theory -> inductive_result * local_theory val declare_rules: binding -> bool -> bool -> string list -> term list -> thm list -> binding list -> Attrib.src list list -> (thm * string list * int) list -> thm list -> thm -> local_theory -> thm list * thm list * thm list * thm * thm list * local_theory val add_ind_def: add_ind_def val gen_add_inductive_i: add_ind_def -> inductive_flags -> ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory -> inductive_result * local_theory val gen_add_inductive: add_ind_def -> bool -> bool -> (binding * string option * mixfix) list -> (binding * string option * mixfix) list -> (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list -> bool -> local_theory -> inductive_result * local_theory val gen_ind_decl: add_ind_def -> bool -> (bool -> local_theory -> local_theory) parser end; structure Inductive: INDUCTIVE = struct (** theory context references **) val inductive_forall_def = @{thm induct_forall_def}; val inductive_conj_name = "HOL.induct_conj"; val inductive_conj_def = @{thm induct_conj_def}; val inductive_conj = @{thms induct_conj}; val inductive_atomize = @{thms induct_atomize}; val inductive_rulify = @{thms induct_rulify}; val inductive_rulify_fallback = @{thms induct_rulify_fallback}; val simp_thms1 = map mk_meta_eq @{lemma "(~ True) = False" "(~ False) = True" "(True --> P) = P" "(False --> P) = True" "(P & True) = P" "(True & P) = P" by (fact simp_thms)+}; val simp_thms2 = map mk_meta_eq [@{thm inf_fun_def}, @{thm inf_bool_def}] @ simp_thms1; val simp_thms3 = map mk_meta_eq [@{thm le_fun_def}, @{thm le_bool_def}, @{thm sup_fun_def}, @{thm sup_bool_def}]; (** misc utilities **) fun message quiet_mode s = if quiet_mode then () else writeln s; fun clean_message quiet_mode s = if ! quick_and_dirty then () else message quiet_mode s; fun coind_prefix true = "co" | coind_prefix false = ""; fun log (b: int) m n = if m >= n then 0 else 1 + log b (b * m) n; fun make_bool_args f g [] i = [] | make_bool_args f g (x :: xs) i = (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2); fun make_bool_args' xs = make_bool_args (K @{term False}) (K @{term True}) xs; fun arg_types_of k c = drop k (binder_types (fastype_of c)); fun find_arg T x [] = raise Fail "find_arg" | find_arg T x ((p as (_, (SOME _, _))) :: ps) = apsnd (cons p) (find_arg T x ps) | find_arg T x ((p as (U, (NONE, y))) :: ps) = if (T: typ) = U then (y, (U, (SOME x, y)) :: ps) else apsnd (cons p) (find_arg T x ps); fun make_args Ts xs = map (fn (T, (NONE, ())) => Const (@{const_name undefined}, T) | (_, (SOME t, ())) => t) (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts)); fun make_args' Ts xs Us = fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs)); fun dest_predicate cs params t = let val k = length params; val (c, ts) = strip_comb t; val (xs, ys) = chop k ts; val i = find_index (fn c' => c' = c) cs; in if xs = params andalso i >= 0 then SOME (c, i, ys, chop (length ys) (arg_types_of k c)) else NONE end; fun mk_names a 0 = [] | mk_names a 1 = [a] | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n); fun select_disj 1 1 = [] | select_disj _ 1 = [rtac disjI1] | select_disj n i = rtac disjI2 :: select_disj (n - 1) (i - 1); (** context data **) type inductive_result = {preds: term list, elims: thm list, raw_induct: thm, induct: thm, inducts: thm list, intrs: thm list, eqs: thm list}; fun transform_result phi {preds, elims, raw_induct: thm, induct, inducts, intrs, eqs} = let val term = Morphism.term phi; val thm = Morphism.thm phi; val fact = Morphism.fact phi; in {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct, induct = thm induct, inducts = fact inducts, intrs = fact intrs, eqs = fact eqs} end; type inductive_info = {names: string list, coind: bool} * inductive_result; val empty_equations = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of); datatype data = Data of {infos: inductive_info Symtab.table, monos: thm list, equations: thm Item_Net.T}; fun make_data (infos, monos, equations) = Data {infos = infos, monos = monos, equations = equations}; structure Data = Generic_Data ( type T = data; val empty = make_data (Symtab.empty, [], empty_equations); val extend = I; fun merge (Data {infos = infos1, monos = monos1, equations = equations1}, Data {infos = infos2, monos = monos2, equations = equations2}) = make_data (Symtab.merge (K true) (infos1, infos2), Thm.merge_thms (monos1, monos2), Item_Net.merge (equations1, equations2)); ); fun map_data f = Data.map (fn Data {infos, monos, equations} => make_data (f (infos, monos, equations))); fun rep_data ctxt = Data.get (Context.Proof ctxt) |> (fn Data rep => rep); fun print_inductives ctxt = let val {infos, monos, ...} = rep_data ctxt; val space = Consts.space_of (Proof_Context.consts_of ctxt); in [Pretty.strs ("(co)inductives:" :: map #1 (Name_Space.extern_table ctxt (space, infos))), Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm ctxt) monos)] |> Pretty.chunks |> Pretty.writeln end; (* inductive info *) fun the_inductive ctxt name = (case Symtab.lookup (#infos (rep_data ctxt)) name of NONE => error ("Unknown (co)inductive predicate " ^ quote name) | SOME info => info); fun put_inductives names info = map_data (fn (infos, monos, equations) => (fold (fn name => Symtab.update (name, info)) names infos, monos, equations)); (* monotonicity rules *) val get_monos = #monos o rep_data; fun mk_mono ctxt thm = let fun eq_to_mono thm' = thm' RS (thm' RS @{thm eq_to_mono}); fun dest_less_concl thm = dest_less_concl (thm RS @{thm le_funD}) handle THM _ => thm RS @{thm le_boolD} in (case concl_of thm of Const ("==", _) $ _ $ _ => eq_to_mono (thm RS meta_eq_to_obj_eq) | _ $ (Const (@{const_name HOL.eq}, _) $ _ $ _) => eq_to_mono thm | _ $ (Const (@{const_name Orderings.less_eq}, _) $ _ $ _) => dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL (resolve_tac [@{thm le_funI}, @{thm le_boolI'}])) thm)) | _ => thm) end handle THM _ => error ("Bad monotonicity theorem:\n" ^ Display.string_of_thm ctxt thm); val mono_add = Thm.declaration_attribute (fn thm => fn context => map_data (fn (infos, monos, equations) => (infos, Thm.add_thm (mk_mono (Context.proof_of context) thm) monos, equations)) context); val mono_del = Thm.declaration_attribute (fn thm => fn context => map_data (fn (infos, monos, equations) => (infos, Thm.del_thm (mk_mono (Context.proof_of context) thm) monos, equations)) context); (* equations *) val get_equations = #equations o rep_data; val equation_add_permissive = Thm.declaration_attribute (fn thm => map_data (fn (infos, monos, equations) => (infos, monos, perhaps (try (Item_Net.update thm)) equations))); (** process rules **) local fun err_in_rule ctxt name t msg = error (cat_lines ["Ill-formed introduction rule " ^ Binding.print name, Syntax.string_of_term ctxt t, msg]); fun err_in_prem ctxt name t p msg = error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p, "in introduction rule " ^ Binding.print name, Syntax.string_of_term ctxt t, msg]); val bad_concl = "Conclusion of introduction rule must be an inductive predicate"; val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate"; val bad_app = "Inductive predicate must be applied to parameter(s) "; fun atomize_term thy = Raw_Simplifier.rewrite_term thy inductive_atomize []; in fun check_rule ctxt cs params ((binding, att), rule) = let val params' = Term.variant_frees rule (Logic.strip_params rule); val frees = rev (map Free params'); val concl = subst_bounds (frees, Logic.strip_assums_concl rule); val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule); val rule' = Logic.list_implies (prems, concl); val aprems = map (atomize_term (Proof_Context.theory_of ctxt)) prems; val arule = fold_rev (Logic.all o Free) params' (Logic.list_implies (aprems, concl)); fun check_ind err t = (case dest_predicate cs params t of NONE => err (bad_app ^ commas (map (Syntax.string_of_term ctxt) params)) | SOME (_, _, ys, _) => if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs then err bad_ind_occ else ()); fun check_prem' prem t = if member (op =) cs (head_of t) then check_ind (err_in_prem ctxt binding rule prem) t else (case t of Abs (_, _, t) => check_prem' prem t | t $ u => (check_prem' prem t; check_prem' prem u) | _ => ()); fun check_prem (prem, aprem) = if can HOLogic.dest_Trueprop aprem then check_prem' prem prem else err_in_prem ctxt binding rule prem "Non-atomic premise"; val _ = (case concl of Const (@{const_name Trueprop}, _) $ t => if member (op =) cs (head_of t) then (check_ind (err_in_rule ctxt binding rule') t; List.app check_prem (prems ~~ aprems)) else err_in_rule ctxt binding rule' bad_concl | _ => err_in_rule ctxt binding rule' bad_concl); in ((binding, att), arule) end; val rulify = hol_simplify inductive_conj #> hol_simplify inductive_rulify #> hol_simplify inductive_rulify_fallback #> Simplifier.norm_hhf; end; (** proofs for (co)inductive predicates **) (* prove monotonicity *) fun prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt = (message (quiet_mode orelse skip_mono andalso !quick_and_dirty orelse fork_mono) " Proving monotonicity ..."; (if skip_mono then Skip_Proof.prove else if fork_mono then Goal.prove_future else Goal.prove) ctxt [] [] (HOLogic.mk_Trueprop (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun)) (fn _ => EVERY [rtac @{thm monoI} 1, REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI'}] 1), REPEAT (FIRST [atac 1, resolve_tac (map (mk_mono ctxt) monos @ get_monos ctxt) 1, etac @{thm le_funE} 1, dtac @{thm le_boolD} 1])])); (* prove introduction rules *) fun prove_intrs quiet_mode coind mono fp_def k intr_ts rec_preds_defs ctxt ctxt' = let val _ = clean_message quiet_mode " Proving the introduction rules ..."; val unfold = funpow k (fn th => th RS fun_cong) (mono RS (fp_def RS (if coind then @{thm def_gfp_unfold} else @{thm def_lfp_unfold}))); val rules = [refl, TrueI, @{lemma "~ False" by (rule notI)}, exI, conjI]; val intrs = map_index (fn (i, intr) => Skip_Proof.prove ctxt [] [] intr (fn _ => EVERY [rewrite_goals_tac rec_preds_defs, rtac (unfold RS iffD2) 1, EVERY1 (select_disj (length intr_ts) (i + 1)), (*Not ares_tac, since refl must be tried before any equality assumptions; backtracking may occur if the premises have extra variables!*) DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]) |> singleton (Proof_Context.export ctxt ctxt')) intr_ts in (intrs, unfold) end; (* prove elimination rules *) fun prove_elims quiet_mode cs params intr_ts intr_names unfold rec_preds_defs ctxt ctxt''' = let val _ = clean_message quiet_mode " Proving the elimination rules ..."; val ([pname], ctxt') = Variable.variant_fixes ["P"] ctxt; val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT)); fun dest_intr r = (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))), Logic.strip_assums_hyp r, Logic.strip_params r); val intrs = map dest_intr intr_ts ~~ intr_names; val rules1 = [disjE, exE, FalseE]; val rules2 = [conjE, FalseE, @{lemma "~ True ==> R" by (rule notE [OF _ TrueI])}]; fun prove_elim c = let val Ts = arg_types_of (length params) c; val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt'; val frees = map Free (anames ~~ Ts); fun mk_elim_prem ((_, _, us, _), ts, params') = Logic.list_all (params', Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (frees ~~ us) @ ts, P)); val c_intrs = filter (equal c o #1 o #1 o #1) intrs; val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) :: map mk_elim_prem (map #1 c_intrs) in (Skip_Proof.prove ctxt'' [] prems P (fn {prems, ...} => EVERY [cut_tac (hd prems) 1, rewrite_goals_tac rec_preds_defs, dtac (unfold RS iffD1) 1, REPEAT (FIRSTGOAL (eresolve_tac rules1)), REPEAT (FIRSTGOAL (eresolve_tac rules2)), EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))]) |> singleton (Proof_Context.export ctxt'' ctxt'''), map #2 c_intrs, length Ts) end in map prove_elim cs end; (* prove simplification equations *) fun prove_eqs quiet_mode cs params intr_ts intrs (elims: (thm * bstring list * int) list) ctxt ctxt'' = (* FIXME ctxt'' ?? *) let val _ = clean_message quiet_mode " Proving the simplification rules ..."; fun dest_intr r = (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))), Logic.strip_assums_hyp r, Logic.strip_params r); val intr_ts' = map dest_intr intr_ts; fun prove_eq c (elim: thm * 'a * 'b) = let val Ts = arg_types_of (length params) c; val (anames, ctxt') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt; val frees = map Free (anames ~~ Ts); val c_intrs = filter (equal c o #1 o #1 o #1) (intr_ts' ~~ intrs); fun mk_intr_conj (((_, _, us, _), ts, params'), _) = let fun list_ex ([], t) = t | list_ex ((a, T) :: vars, t) = HOLogic.exists_const T $ Abs (a, T, list_ex (vars, t)); val conjs = map2 (curry HOLogic.mk_eq) frees us @ (map HOLogic.dest_Trueprop ts); in list_ex (params', if null conjs then @{term True} else foldr1 HOLogic.mk_conj conjs) end; val lhs = list_comb (c, params @ frees); val rhs = if null c_intrs then @{term False} else foldr1 HOLogic.mk_disj (map mk_intr_conj c_intrs); val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)); fun prove_intr1 (i, _) = Subgoal.FOCUS_PREMS (fn {params, prems, ...} => let val (prems', last_prem) = split_last prems; in EVERY1 (select_disj (length c_intrs) (i + 1)) THEN EVERY (replicate (length params) (rtac @{thm exI} 1)) THEN EVERY (map (fn prem => (rtac @{thm conjI} 1 THEN rtac prem 1)) prems') THEN rtac last_prem 1 end) ctxt' 1; fun prove_intr2 (((_, _, us, _), ts, params'), intr) = EVERY (replicate (length params') (etac @{thm exE} 1)) THEN EVERY (replicate (length ts + length us - 1) (etac @{thm conjE} 1)) THEN Subgoal.FOCUS_PREMS (fn {params, prems, ...} => let val (eqs, prems') = chop (length us) prems; val rew_thms = map (fn th => th RS @{thm eq_reflection}) eqs; in rewrite_goal_tac rew_thms 1 THEN rtac intr 1 THEN EVERY (map (fn p => rtac p 1) prems') end) ctxt' 1; in Skip_Proof.prove ctxt' [] [] eq (fn _ => rtac @{thm iffI} 1 THEN etac (#1 elim) 1 THEN EVERY (map_index prove_intr1 c_intrs) THEN (if null c_intrs then etac @{thm FalseE} 1 else let val (c_intrs', last_c_intr) = split_last c_intrs in EVERY (map (fn ci => etac @{thm disjE} 1 THEN prove_intr2 ci) c_intrs') THEN prove_intr2 last_c_intr end)) |> rulify |> singleton (Proof_Context.export ctxt' ctxt'') end; in map2 prove_eq cs elims end; (* derivation of simplified elimination rules *) local (*delete needless equality assumptions*) val refl_thin = Goal.prove_global @{theory HOL} [] [] @{prop "!!P. a = a ==> P ==> P"} (fn _ => assume_tac 1); val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE]; val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls; fun simp_case_tac ss i = EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i; in fun mk_cases ctxt prop = let val thy = Proof_Context.theory_of ctxt; val ss = simpset_of ctxt; fun err msg = error (Pretty.string_of (Pretty.block [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop])); val elims = Induct.find_casesP ctxt prop; val cprop = Thm.cterm_of thy prop; val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac; fun mk_elim rl = Thm.implies_intr cprop (Tactic.rule_by_tactic ctxt tac (Thm.assume cprop RS rl)) |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt); in (case get_first (try mk_elim) elims of SOME r => r | NONE => err "Proposition not an inductive predicate:") end; end; (* inductive_cases *) fun gen_inductive_cases prep_att prep_prop args lthy = let val thy = Proof_Context.theory_of lthy; val facts = args |> Par_List.map (fn ((a, atts), props) => ((a, map (prep_att thy) atts), Par_List.map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props)); in lthy |> Local_Theory.notes facts |>> map snd end; val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop; val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop; val ind_cases_setup = Method.setup @{binding ind_cases} (Scan.lift (Scan.repeat1 Args.name_source -- Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.binding) []) >> (fn (raw_props, fixes) => fn ctxt => let val (_, ctxt') = Variable.add_fixes_binding fixes ctxt; val props = Syntax.read_props ctxt' raw_props; val ctxt'' = fold Variable.declare_term props ctxt'; val rules = Proof_Context.export ctxt'' ctxt (map (mk_cases ctxt'') props) in Method.erule 0 rules end)) "dynamic case analysis on predicates"; (* derivation of simplified equation *) fun mk_simp_eq ctxt prop = let val thy = Proof_Context.theory_of ctxt; val ctxt' = Variable.auto_fixes prop ctxt; val lhs_of = fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of; val substs = Item_Net.retrieve (get_equations ctxt) (HOLogic.dest_Trueprop prop) |> map_filter (fn eq => SOME (Pattern.match thy (lhs_of eq, HOLogic.dest_Trueprop prop) (Vartab.empty, Vartab.empty), eq) handle Pattern.MATCH => NONE); val (subst, eq) = (case substs of [s] => s | _ => error ("equations matching pattern " ^ Syntax.string_of_term ctxt prop ^ " is not unique")); val inst = map (fn v => (cterm_of thy (Var v), cterm_of thy (Envir.subst_term subst (Var v)))) (Term.add_vars (lhs_of eq) []); in Drule.cterm_instantiate inst eq |> Conv.fconv_rule (Conv.arg_conv (Conv.arg_conv (Simplifier.full_rewrite (simpset_of ctxt)))) |> singleton (Variable.export ctxt' ctxt) end (* inductive simps *) fun gen_inductive_simps prep_att prep_prop args lthy = let val thy = Proof_Context.theory_of lthy; val facts = args |> map (fn ((a, atts), props) => ((a, map (prep_att thy) atts), map (Thm.no_attributes o single o mk_simp_eq lthy o prep_prop lthy) props)); in lthy |> Local_Theory.notes facts |>> map snd end; val inductive_simps = gen_inductive_simps Attrib.intern_src Syntax.read_prop; val inductive_simps_i = gen_inductive_simps (K I) Syntax.check_prop; (* prove induction rule *) fun prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def rec_preds_defs ctxt ctxt''' = (* FIXME ctxt''' ?? *) let val _ = clean_message quiet_mode " Proving the induction rule ..."; (* predicates for induction rule *) val (pnames, ctxt') = Variable.variant_fixes (mk_names "P" (length cs)) ctxt; val preds = map2 (curry Free) pnames (map (fn c => arg_types_of (length params) c ---> HOLogic.boolT) cs); (* transform an introduction rule into a premise for induction rule *) fun mk_ind_prem r = let fun subst s = (case dest_predicate cs params s of SOME (_, i, ys, (_, Ts)) => let val k = length Ts; val bs = map Bound (k - 1 downto 0); val P = list_comb (nth preds i, map (incr_boundvars k) ys @ bs); val Q = fold_rev Term.abs (mk_names "x" k ~~ Ts) (HOLogic.mk_binop inductive_conj_name (list_comb (incr_boundvars k s, bs), P)); in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end | NONE => (case s of t $ u => (fst (subst t) $ fst (subst u), NONE) | Abs (a, T, t) => (Abs (a, T, fst (subst t)), NONE) | _ => (s, NONE))); fun mk_prem s prems = (case subst s of (_, SOME (t, u)) => t :: u :: prems | (t, _) => t :: prems); val SOME (_, i, ys, _) = dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r)); in fold_rev (Logic.all o Free) (Logic.strip_params r) (Logic.list_implies (map HOLogic.mk_Trueprop (fold_rev mk_prem (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r)) []), HOLogic.mk_Trueprop (list_comb (nth preds i, ys)))) end; val ind_prems = map mk_ind_prem intr_ts; (* make conclusions for induction rules *) val Tss = map (binder_types o fastype_of) preds; val (xnames, ctxt'') = Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt'; val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map (fn (((xnames, Ts), c), P) => let val frees = map Free (xnames ~~ Ts) in HOLogic.mk_imp (list_comb (c, params @ frees), list_comb (P, frees)) end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds))); (* make predicate for instantiation of abstract induction rule *) val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj (map_index (fn (i, P) => fold_rev (curry HOLogic.mk_imp) (make_bool_args HOLogic.mk_not I bs i) (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))) preds)); val ind_concl = HOLogic.mk_Trueprop (HOLogic.mk_binrel @{const_name Orderings.less_eq} (rec_const, ind_pred)); val raw_fp_induct = mono RS (fp_def RS @{thm def_lfp_induct}); val induct = Skip_Proof.prove ctxt'' [] ind_prems ind_concl (fn {prems, ...} => EVERY [rewrite_goals_tac [inductive_conj_def], DETERM (rtac raw_fp_induct 1), REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI}] 1), rewrite_goals_tac simp_thms2, (*This disjE separates out the introduction rules*) REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])), (*Now break down the individual cases. No disjE here in case some premise involves disjunction.*) REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)), REPEAT (FIRSTGOAL (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))), EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule (inductive_conj_def :: rec_preds_defs @ simp_thms2) prem, conjI, refl] 1)) prems)]); val lemma = Skip_Proof.prove ctxt'' [] [] (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY [rewrite_goals_tac rec_preds_defs, REPEAT (EVERY [REPEAT (resolve_tac [conjI, impI] 1), REPEAT (eresolve_tac [@{thm le_funE}, @{thm le_boolE}] 1), atac 1, rewrite_goals_tac simp_thms1, atac 1])]); in singleton (Proof_Context.export ctxt'' ctxt''') (induct RS lemma) end; (** specification of (co)inductive predicates **) fun mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts monos params cnames_syn lthy = let val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp}; val argTs = fold (combine (op =) o arg_types_of (length params)) cs []; val k = log 2 1 (length cs); val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT; val p :: xs = map Free (Variable.variant_frees lthy intr_ts (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs))); val bs = map Free (Variable.variant_frees lthy (p :: xs @ intr_ts) (map (rpair HOLogic.boolT) (mk_names "b" k))); fun subst t = (case dest_predicate cs params t of SOME (_, i, ts, (Ts, Us)) => let val l = length Us; val zs = map Bound (l - 1 downto 0); in fold_rev (Term.abs o pair "z") Us (list_comb (p, make_bool_args' bs i @ make_args argTs ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us)))) end | NONE => (case t of t1 $ t2 => subst t1 $ subst t2 | Abs (x, T, u) => Abs (x, T, subst u) | _ => t)); (* transform an introduction rule into a conjunction *) (* [| p_i t; ... |] ==> p_j u *) (* is transformed into *) (* b_j & x_j = u & p b_j t & ... *) fun transform_rule r = let val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r)); val ps = make_bool_args HOLogic.mk_not I bs i @ map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @ map (subst o HOLogic.dest_Trueprop) (Logic.strip_assums_hyp r); in fold_rev (fn (x, T) => fn P => HOLogic.exists_const T $ Abs (x, T, P)) (Logic.strip_params r) (if null ps then @{term True} else foldr1 HOLogic.mk_conj ps) end; (* make a disjunction of all introduction rules *) val fp_fun = fold_rev lambda (p :: bs @ xs) (if null intr_ts then @{term False} else foldr1 HOLogic.mk_disj (map transform_rule intr_ts)); (* add definiton of recursive predicates to theory *) val rec_name = if Binding.is_empty alt_name then Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn)) else alt_name; val ((rec_const, (_, fp_def)), lthy') = lthy |> Local_Theory.conceal |> Local_Theory.define ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn), ((Binding.empty, @{attributes [nitpick_unfold]}), fold_rev lambda params (Const (fp_name, (predT --> predT) --> predT) $ fp_fun))) ||> Local_Theory.restore_naming lthy; val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def]) (cterm_of (Proof_Context.theory_of lthy') (list_comb (rec_const, params))); val specs = if length cs < 2 then [] else map_index (fn (i, (name_mx, c)) => let val Ts = arg_types_of (length params) c; val xs = map Free (Variable.variant_frees lthy intr_ts (mk_names "x" (length Ts) ~~ Ts)); in (name_mx, (apfst Binding.conceal Attrib.empty_binding, fold_rev lambda (params @ xs) (list_comb (rec_const, params @ make_bool_args' bs i @ make_args argTs (xs ~~ Ts))))) end) (cnames_syn ~~ cs); val (consts_defs, lthy'') = lthy' |> fold_map Local_Theory.define specs; val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs); val (_, lthy''') = Variable.add_fixes (map (fst o dest_Free) params) lthy''; val mono = prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos lthy'''; val (_, lthy'''') = Local_Theory.note (apfst Binding.conceal Attrib.empty_binding, Proof_Context.export lthy''' lthy'' [mono]) lthy''; in (lthy'''', lthy''', rec_name, mono, fp_def', map (#2 o #2) consts_defs, list_comb (rec_const, params), preds, argTs, bs, xs) end; fun declare_rules rec_binding coind no_ind cnames preds intrs intr_bindings intr_atts elims eqs raw_induct lthy = let val rec_name = Binding.name_of rec_binding; fun rec_qualified qualified = Binding.qualify qualified rec_name; val intr_names = map Binding.name_of intr_bindings; val ind_case_names = Rule_Cases.case_names intr_names; val induct = if coind then (raw_induct, [Rule_Cases.case_names [rec_name], Rule_Cases.case_conclusion (rec_name, intr_names), Rule_Cases.consumes 1, Induct.coinduct_pred (hd cnames)]) else if no_ind orelse length cnames > 1 then (raw_induct, [ind_case_names, Rule_Cases.consumes 0]) else (raw_induct RSN (2, rev_mp), [ind_case_names, Rule_Cases.consumes 1]); val (intrs', lthy1) = lthy |> Spec_Rules.add (if coind then Spec_Rules.Co_Inductive else Spec_Rules.Inductive) (preds, intrs) |> Local_Theory.notes (map (rec_qualified false) intr_bindings ~~ intr_atts ~~ map (fn th => [([th], [Attrib.internal (K (Context_Rules.intro_query NONE))])]) intrs) |>> map (hd o snd); val (((_, elims'), (_, [induct'])), lthy2) = lthy1 |> Local_Theory.note ((rec_qualified true (Binding.name "intros"), []), intrs') ||>> fold_map (fn (name, (elim, cases, k)) => Local_Theory.note ((Binding.qualify true (Long_Name.base_name name) (Binding.name "cases"), [Attrib.internal (K (Rule_Cases.case_names cases)), Attrib.internal (K (Rule_Cases.consumes 1)), Attrib.internal (K (Rule_Cases.constraints k)), Attrib.internal (K (Induct.cases_pred name)), Attrib.internal (K (Context_Rules.elim_query NONE))]), [elim]) #> apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>> Local_Theory.note ((rec_qualified true (Binding.name (coind_prefix coind ^ "induct")), map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]); val (eqs', lthy3) = lthy2 |> fold_map (fn (name, eq) => Local_Theory.note ((Binding.qualify true (Long_Name.base_name name) (Binding.name "simps"), [Attrib.internal (K equation_add_permissive)]), [eq]) #> apfst (hd o snd)) (if null eqs then [] else (cnames ~~ eqs)) val (inducts, lthy4) = if no_ind orelse coind then ([], lthy3) else let val inducts = cnames ~~ Project_Rule.projects lthy3 (1 upto length cnames) induct' in lthy3 |> Local_Theory.notes [((rec_qualified true (Binding.name "inducts"), []), inducts |> map (fn (name, th) => ([th], [Attrib.internal (K ind_case_names), Attrib.internal (K (Rule_Cases.consumes 1)), Attrib.internal (K (Induct.induct_pred name))])))] |>> snd o hd end; in (intrs', elims', eqs', induct', inducts, lthy4) end; type inductive_flags = {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool, no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool}; type add_ind_def = inductive_flags -> term list -> (Attrib.binding * term) list -> thm list -> term list -> (binding * mixfix) list -> local_theory -> inductive_result * local_theory; fun add_ind_def {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono} cs intros monos params cnames_syn lthy = let val _ = null cnames_syn andalso error "No inductive predicates given"; val names = map (Binding.name_of o fst) cnames_syn; val _ = message (quiet_mode andalso not verbose) ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names); val cnames = map (Local_Theory.full_name lthy o #1) cnames_syn; (* FIXME *) val ((intr_names, intr_atts), intr_ts) = apfst split_list (split_list (map (check_rule lthy cs params) intros)); val (lthy1, lthy2, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds, argTs, bs, xs) = mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts monos params cnames_syn lthy; val (intrs, unfold) = prove_intrs quiet_mode coind mono fp_def (length bs + length xs) intr_ts rec_preds_defs lthy2 lthy1; val elims = if no_elim then [] else prove_elims quiet_mode cs params intr_ts (map Binding.name_of intr_names) unfold rec_preds_defs lthy2 lthy1; val raw_induct = zero_var_indexes (if no_ind then Drule.asm_rl else if coind then singleton (Proof_Context.export lthy2 lthy1) (rotate_prems ~1 (Object_Logic.rulify (fold_rule rec_preds_defs (rewrite_rule simp_thms3 (mono RS (fp_def RS @{thm def_coinduct})))))) else prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def rec_preds_defs lthy2 lthy1); val eqs = if no_elim then [] else prove_eqs quiet_mode cs params intr_ts intrs elims lthy2 lthy1; val elims' = map (fn (th, ns, i) => (rulify th, ns, i)) elims; val intrs' = map rulify intrs; val (intrs'', elims'', eqs', induct, inducts, lthy3) = declare_rules rec_name coind no_ind cnames preds intrs' intr_names intr_atts elims' eqs raw_induct lthy1; val result = {preds = preds, intrs = intrs'', elims = elims'', raw_induct = rulify raw_induct, induct = induct, inducts = inducts, eqs = eqs'}; val lthy4 = lthy3 |> Local_Theory.declaration {syntax = false, pervasive = false} (fn phi => let val result' = transform_result phi result; in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end); in (result, lthy4) end; (* external interfaces *) fun gen_add_inductive_i mk_def (flags as {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}) cnames_syn pnames spec monos lthy = let val thy = Proof_Context.theory_of lthy; val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions"); (* abbrevs *) val (_, ctxt1) = Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn) lthy; fun get_abbrev ((name, atts), t) = if can (Logic.strip_assums_concl #> Logic.dest_equals) t then let val _ = Binding.is_empty name andalso null atts orelse error "Abbreviations may not have names or attributes"; val ((x, T), rhs) = Local_Defs.abs_def (snd (Local_Defs.cert_def ctxt1 t)); val var = (case find_first (fn ((c, _), _) => Binding.name_of c = x) cnames_syn of NONE => error ("Undeclared head of abbreviation " ^ quote x) | SOME ((b, T'), mx) => if T <> T' then error ("Bad type specification for abbreviation " ^ quote x) else (b, mx)); in SOME (var, rhs) end else NONE; val abbrevs = map_filter get_abbrev spec; val bs = map (Binding.name_of o fst o fst) abbrevs; (* predicates *) val pre_intros = filter_out (is_some o get_abbrev) spec; val cnames_syn' = filter_out (member (op =) bs o Binding.name_of o fst o fst) cnames_syn; val cs = map (Free o apfst Binding.name_of o fst) cnames_syn'; val ps = map Free pnames; val (_, ctxt2) = lthy |> Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn'); val _ = map (fn abbr => Local_Defs.fixed_abbrev abbr ctxt2) abbrevs; val ctxt3 = ctxt2 |> fold (snd oo Local_Defs.fixed_abbrev) abbrevs; val expand = Assumption.export_term ctxt3 lthy #> Proof_Context.cert_term lthy; fun close_rule r = fold (Logic.all o Free) (fold_aterms (fn t as Free (v as (s, _)) => if Variable.is_fixed ctxt1 s orelse member (op =) ps t then I else insert (op =) v | _ => I) r []) r; val intros = map (apsnd (Syntax.check_term lthy #> close_rule #> expand)) pre_intros; val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn'; in lthy |> mk_def flags cs intros monos ps preds ||> fold (snd oo Local_Theory.abbrev Syntax.mode_default) abbrevs end; fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos int lthy = let val ((vars, intrs), _) = lthy |> Proof_Context.set_mode Proof_Context.mode_abbrev |> Specification.read_spec (cnames_syn @ pnames_syn) intro_srcs; val (cs, ps) = chop (length cnames_syn) vars; val monos = Attrib.eval_thms lthy raw_monos; val flags = {quiet_mode = false, verbose = verbose, alt_name = Binding.empty, coind = coind, no_elim = false, no_ind = false, skip_mono = false, fork_mono = not int}; in lthy |> gen_add_inductive_i mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos end; val add_inductive_i = gen_add_inductive_i add_ind_def; val add_inductive = gen_add_inductive add_ind_def; fun add_inductive_global flags cnames_syn pnames pre_intros monos thy = let val name = Sign.full_name thy (fst (fst (hd cnames_syn))); val ctxt' = thy |> Named_Target.theory_init |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd |> Local_Theory.exit; val info = #2 (the_inductive ctxt' name); in (info, Proof_Context.theory_of ctxt') end; (* read off arities of inductive predicates from raw induction rule *) fun arities_of induct = map (fn (_ $ t $ u) => (fst (dest_Const (head_of t)), length (snd (strip_comb u)))) (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct))); (* read off parameters of inductive predicate from raw induction rule *) fun params_of induct = let val (_ $ t $ u :: _) = HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)); val (_, ts) = strip_comb t; val (_, us) = strip_comb u; in List.take (ts, length ts - length us) end; val pname_of_intr = concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst; (* partition introduction rules according to predicate name *) fun gen_partition_rules f induct intros = fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros (map (rpair [] o fst) (arities_of induct)); val partition_rules = gen_partition_rules I; fun partition_rules' induct = gen_partition_rules fst induct; fun unpartition_rules intros xs = fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r) (fn x :: xs => (x, xs)) #>> the) intros xs |> fst; (* infer order of variables in intro rules from order of quantifiers in elim rule *) fun infer_intro_vars elim arity intros = let val thy = theory_of_thm elim; val _ :: cases = prems_of elim; val used = map (fst o fst) (Term.add_vars (prop_of elim) []); fun mtch (t, u) = let val params = Logic.strip_params t; val vars = map (Var o apfst (rpair 0)) (Name.variant_list used (map fst params) ~~ map snd params); val ts = map (curry subst_bounds (rev vars)) (List.drop (Logic.strip_assums_hyp t, arity)); val us = Logic.strip_imp_prems u; val tab = fold (Pattern.first_order_match thy) (ts ~~ us) (Vartab.empty, Vartab.empty); in map (Envir.subst_term tab) vars end in map (mtch o apsnd prop_of) (cases ~~ intros) end; (** package setup **) (* setup theory *) val setup = ind_cases_setup #> Attrib.setup @{binding mono} (Attrib.add_del mono_add mono_del) "declaration of monotonicity rule"; (* outer syntax *) val _ = Keyword.keyword "monos"; fun gen_ind_decl mk_def coind = Parse.fixes -- Parse.for_fixes -- Scan.optional Parse_Spec.where_alt_specs [] -- Scan.optional (Parse.$$$ "monos" |-- Parse.!!! Parse_Spec.xthms1) [] >> (fn (((preds, params), specs), monos) => (snd oo gen_add_inductive mk_def true coind preds params specs monos)); val ind_decl = gen_ind_decl add_ind_def; val _ = Outer_Syntax.local_theory' "inductive" "define inductive predicates" Keyword.thy_decl (ind_decl false); val _ = Outer_Syntax.local_theory' "coinductive" "define coinductive predicates" Keyword.thy_decl (ind_decl true); val _ = Outer_Syntax.local_theory "inductive_cases" "create simplified instances of elimination rules (improper)" Keyword.thy_script (Parse.and_list1 Parse_Spec.specs >> (snd oo inductive_cases)); val _ = Outer_Syntax.local_theory "inductive_simps" "create simplification rules for inductive predicates" Keyword.thy_script (Parse.and_list1 Parse_Spec.specs >> (snd oo inductive_simps)); end;