| author | wenzelm |
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 |
| parent 35416 | d8d7d1b785af |
| child 46912 | e0cd5c4df8e6 |
| permissions | -rw-r--r-- |
(* Title: HOL/UNITY/Comp.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: Sidi Ehmety Composition. From Chandy and Sanders, "Reasoning About Program Composition", Technical Report 2000-003, University of Florida, 2000. *) header{*Composition: Basic Primitives*} theory Comp imports Union begin instantiation program :: (type) ord begin definition component_def: "F \<le> H <-> (\<exists>G. F\<squnion>G = H)" definition strict_component_def: "F < (H::'a program) <-> (F \<le> H & F \<noteq> H)" instance .. end definition component_of :: "'a program =>'a program=> bool" (infixl "component'_of" 50) where "F component_of H == \<exists>G. F ok G & F\<squnion>G = H" definition strict_component_of :: "'a program\<Rightarrow>'a program=> bool" (infixl "strict'_component'_of" 50) where "F strict_component_of H == F component_of H & F\<noteq>H" definition preserves :: "('a=>'b) => 'a program set" where "preserves v == \<Inter>z. stable {s. v s = z}" definition localize :: "('a=>'b) => 'a program => 'a program" where "localize v F == mk_program(Init F, Acts F, AllowedActs F \<inter> (\<Union>G \<in> preserves v. Acts G))" definition funPair :: "['a => 'b, 'a => 'c, 'a] => 'b * 'c" where "funPair f g == %x. (f x, g x)" subsection{*The component relation*} lemma componentI: "H \<le> F | H \<le> G ==> H \<le> (F\<squnion>G)" apply (unfold component_def, auto) apply (rule_tac x = "G\<squnion>Ga" in exI) apply (rule_tac [2] x = "G\<squnion>F" in exI) apply (auto simp add: Join_ac) done lemma component_eq_subset: "(F \<le> G) = (Init G \<subseteq> Init F & Acts F \<subseteq> Acts G & AllowedActs G \<subseteq> AllowedActs F)" apply (unfold component_def) apply (force intro!: exI program_equalityI) done lemma component_SKIP [iff]: "SKIP \<le> F" apply (unfold component_def) apply (force intro: Join_SKIP_left) done lemma component_refl [iff]: "F \<le> (F :: 'a program)" apply (unfold component_def) apply (blast intro: Join_SKIP_right) done lemma SKIP_minimal: "F \<le> SKIP ==> F = SKIP" by (auto intro!: program_equalityI simp add: component_eq_subset) lemma component_Join1: "F \<le> (F\<squnion>G)" by (unfold component_def, blast) lemma component_Join2: "G \<le> (F\<squnion>G)" apply (unfold component_def) apply (simp add: Join_commute, blast) done lemma Join_absorb1: "F \<le> G ==> F\<squnion>G = G" by (auto simp add: component_def Join_left_absorb) lemma Join_absorb2: "G \<le> F ==> F\<squnion>G = F" by (auto simp add: Join_ac component_def) lemma JN_component_iff: "((JOIN I F) \<le> H) = (\<forall>i \<in> I. F i \<le> H)" by (simp add: component_eq_subset, blast) lemma component_JN: "i \<in> I ==> (F i) \<le> (\<Squnion>i \<in> I. (F i))" apply (unfold component_def) apply (blast intro: JN_absorb) done lemma component_trans: "[| F \<le> G; G \<le> H |] ==> F \<le> (H :: 'a program)" apply (unfold component_def) apply (blast intro: Join_assoc [symmetric]) done lemma component_antisym: "[| F \<le> G; G \<le> F |] ==> F = (G :: 'a program)" apply (simp (no_asm_use) add: component_eq_subset) apply (blast intro!: program_equalityI) done lemma Join_component_iff: "((F\<squnion>G) \<le> H) = (F \<le> H & G \<le> H)" by (simp add: component_eq_subset, blast) lemma component_constrains: "[| F \<le> G; G \<in> A co B |] ==> F \<in> A co B" by (auto simp add: constrains_def component_eq_subset) lemma component_stable: "[| F \<le> G; G \<in> stable A |] ==> F \<in> stable A" by (auto simp add: stable_def component_constrains) (*Used in Guar.thy to show that programs are partially ordered*) lemmas program_less_le = strict_component_def subsection{*The preserves property*} lemma preservesI: "(!!z. F \<in> stable {s. v s = z}) ==> F \<in> preserves v" by (unfold preserves_def, blast) lemma preserves_imp_eq: "[| F \<in> preserves v; act \<in> Acts F; (s,s') \<in> act |] ==> v s = v s'" by (unfold preserves_def stable_def constrains_def, force) lemma Join_preserves [iff]: "(F\<squnion>G \<in> preserves v) = (F \<in> preserves v & G \<in> preserves v)" by (unfold preserves_def, auto) lemma JN_preserves [iff]: "(JOIN I F \<in> preserves v) = (\<forall>i \<in> I. F i \<in> preserves v)" by (simp add: JN_stable preserves_def, blast) lemma SKIP_preserves [iff]: "SKIP \<in> preserves v" by (auto simp add: preserves_def) lemma funPair_apply [simp]: "(funPair f g) x = (f x, g x)" by (simp add: funPair_def) lemma preserves_funPair: "preserves (funPair v w) = preserves v \<inter> preserves w" by (auto simp add: preserves_def stable_def constrains_def, blast) (* (F \<in> preserves (funPair v w)) = (F \<in> preserves v \<inter> preserves w) *) declare preserves_funPair [THEN eqset_imp_iff, iff] lemma funPair_o_distrib: "(funPair f g) o h = funPair (f o h) (g o h)" by (simp add: funPair_def o_def) lemma fst_o_funPair [simp]: "fst o (funPair f g) = f" by (simp add: funPair_def o_def) lemma snd_o_funPair [simp]: "snd o (funPair f g) = g" by (simp add: funPair_def o_def) lemma subset_preserves_o: "preserves v \<subseteq> preserves (w o v)" by (force simp add: preserves_def stable_def constrains_def) lemma preserves_subset_stable: "preserves v \<subseteq> stable {s. P (v s)}" apply (auto simp add: preserves_def stable_def constrains_def) apply (rename_tac s' s) apply (subgoal_tac "v s = v s'") apply (force+) done lemma preserves_subset_increasing: "preserves v \<subseteq> increasing v" by (auto simp add: preserves_subset_stable [THEN subsetD] increasing_def) lemma preserves_id_subset_stable: "preserves id \<subseteq> stable A" by (force simp add: preserves_def stable_def constrains_def) (** For use with def_UNION_ok_iff **) lemma safety_prop_preserves [iff]: "safety_prop (preserves v)" by (auto intro: safety_prop_INTER1 simp add: preserves_def) (** Some lemmas used only in Client.thy **) lemma stable_localTo_stable2: "[| F \<in> stable {s. P (v s) (w s)}; G \<in> preserves v; G \<in> preserves w |] ==> F\<squnion>G \<in> stable {s. P (v s) (w s)}" apply simp apply (subgoal_tac "G \<in> preserves (funPair v w) ") prefer 2 apply simp apply (drule_tac P1 = "split ?Q" in preserves_subset_stable [THEN subsetD], auto) done lemma Increasing_preserves_Stable: "[| F \<in> stable {s. v s \<le> w s}; G \<in> preserves v; F\<squnion>G \<in> Increasing w |] ==> F\<squnion>G \<in> Stable {s. v s \<le> w s}" apply (auto simp add: stable_def Stable_def Increasing_def Constrains_def all_conj_distrib) apply (blast intro: constrains_weaken) (*The G case remains*) apply (auto simp add: preserves_def stable_def constrains_def) (*We have a G-action, so delete assumptions about F-actions*) apply (erule_tac V = "\<forall>act \<in> Acts F. ?P act" in thin_rl) apply (erule_tac V = "\<forall>z. \<forall>act \<in> Acts F. ?P z act" in thin_rl) apply (subgoal_tac "v x = v xa") apply auto apply (erule order_trans, blast) done (** component_of **) (* component_of is stronger than \<le> *) lemma component_of_imp_component: "F component_of H ==> F \<le> H" by (unfold component_def component_of_def, blast) (* component_of satisfies many of the same properties as \<le> *) lemma component_of_refl [simp]: "F component_of F" apply (unfold component_of_def) apply (rule_tac x = SKIP in exI, auto) done lemma component_of_SKIP [simp]: "SKIP component_of F" by (unfold component_of_def, auto) lemma component_of_trans: "[| F component_of G; G component_of H |] ==> F component_of H" apply (unfold component_of_def) apply (blast intro: Join_assoc [symmetric]) done lemmas strict_component_of_eq = strict_component_of_def (** localize **) lemma localize_Init_eq [simp]: "Init (localize v F) = Init F" by (simp add: localize_def) lemma localize_Acts_eq [simp]: "Acts (localize v F) = Acts F" by (simp add: localize_def) lemma localize_AllowedActs_eq [simp]: "AllowedActs (localize v F) = AllowedActs F \<inter> (\<Union>G \<in> preserves v. Acts G)" by (unfold localize_def, auto) end