author | wenzelm |
Sat, 22 May 2010 19:42:20 +0200 | |
changeset 37058 | c47653f3ec14 |
parent 460 | 5d91bd2db00a |
permissions | -rw-r--r-- |
\begin{thebibliography}{10} \bibitem{andrews86} Andrews, P.~B., \newblock {\em An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof}, \newblock Academic Press, 1986 \bibitem{basin91} Basin, D., Kaufmann, M., \newblock The {Boyer-Moore} prover and {Nuprl}: An experimental comparison, \newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge Univ. Press, 1991, pp.~89--119 \bibitem{boyer86} Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., Wos, L., \newblock Set theory in first-order logic: Clauses for {G\"odel's} axioms, \newblock {\em J. Auto. Reas. {\bf 2}}, 3 (1986), 287--327 \bibitem{bm88book} Boyer, R.~S., Moore, J.~S., \newblock {\em A Computational Logic Handbook}, \newblock Academic Press, 1988 \bibitem{camilleri92} Camilleri, J., Melham, T.~F., \newblock Reasoning with inductively defined relations in the {HOL} theorem prover, \newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992 \bibitem{charniak80} Charniak, E., Riesbeck, C.~K., McDermott, D.~V., \newblock {\em Artificial Intelligence Programming}, \newblock Lawrence Erlbaum Associates, 1980 \bibitem{church40} Church, A., \newblock A formulation of the simple theory of types, \newblock {\em J. Symb. Logic {\bf 5}\/} (1940), 56--68 \bibitem{coen92} Coen, M.~D., \newblock {\em Interactive Program Derivation}, \newblock PhD thesis, University of Cambridge, 1992, \newblock Computer Laboratory Technical Report 272 \bibitem{constable86} {Constable et al.}, R.~L., \newblock {\em Implementing Mathematics with the Nuprl Proof Development System}, \newblock Prentice-Hall, 1986 \bibitem{davey&priestley} Davey, B.~A., Priestley, H.~A., \newblock {\em Introduction to Lattices and Order}, \newblock Cambridge Univ. Press, 1990 \bibitem{dawson90} Dawson, W.~M., \newblock {\em A Generic Logic Environment}, \newblock PhD thesis, Imperial College, London, 1990 \bibitem{debruijn72} de~Bruijn, N.~G., \newblock Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the {Church-Rosser Theorem}, \newblock {\em Indag. Math. {\bf 34}\/} (1972), 381--392 \bibitem{devlin79} Devlin, K.~J., \newblock {\em Fundamentals of Contemporary Set Theory}, \newblock Springer, 1979 \bibitem{coq} {Dowek et al.}, G., \newblock The {Coq} proof assistant user's guide, \newblock Technical Report 134, INRIA-Rocquencourt, 1991 \bibitem{dummett} Dummett, M., \newblock {\em Elements of Intuitionism}, \newblock Oxford University Press, 1977 \bibitem{dyckhoff} Dyckhoff, R., \newblock Contraction-free sequent calculi for intuitionistic logic, \newblock {\em J. Symb. Logic {\bf 57}}, 3 (1992), 795--807 \bibitem{felty91a} Felty, A., \newblock A logic program for transforming sequent proofs to natural deduction proofs, \newblock In {\em Extensions of Logic Programming\/} (1991), P.~Schroeder-Heister, Ed., Springer, pp.~157--178, \newblock LNAI 475 \bibitem{felty93} Felty, A., \newblock Implementing tactics and tacticals in a higher-order logic programming language, \newblock {\em J. Auto. Reas. {\bf 11}}, 1 (1993), 43--82 \bibitem{frost93} Frost, J., \newblock A case study of co-induction in {Isabelle HOL}, \newblock Tech. Rep. 308, Comp. Lab., Univ. Cambridge, Aug. 1993 \bibitem{OBJ} Futatsugi, K., Goguen, J., Jouannaud, J.-P., Meseguer, J., \newblock Principles of {OBJ2}, \newblock In {\em Princ. Prog. Lang.\/} (1985), pp.~52--66 \bibitem{gallier86} Gallier, J.~H., \newblock {\em Logic for Computer Science: Foundations of Automatic Theorem Proving}, \newblock Harper \& Row, 1986 \bibitem{mgordon-hol} Gordon, M. J.~C., Melham, T.~F., \newblock {\em Introduction to {HOL}: A Theorem Proving Environment for Higher Order Logic}, \newblock Cambridge Univ. Press, 1993 \bibitem{halmos60} Halmos, P.~R., \newblock {\em Naive Set Theory}, \newblock Van Nostrand, 1960 \bibitem{harper-jacm} Harper, R., Honsell, F., Plotkin, G., \newblock A framework for defining logics, \newblock {\em J.~ACM {\bf 40}}, 1 (1993), 143--184 \bibitem{haskell-tutorial} Hudak, P., Fasel, J.~H., \newblock A gentle introduction to {Haskell}, \newblock {\em {SIGPLAN} {\bf 27}}, 5 (May 1992) \bibitem{haskell-report} Hudak, P., Jones, S.~P., Wadler, P., \newblock Report on the programming language {Haskell}: A non-strict, purely functional language, \newblock {\em {SIGPLAN} {\bf 27}}, 5 (May 1992), \newblock Version 1.2 \bibitem{huet75} Huet, G.~P., \newblock A unification algorithm for typed $\lambda$-calculus, \newblock {\em Theoretical Comput. Sci. {\bf 1}\/} (1975), 27--57 \bibitem{huet78} Huet, G.~P., Lang, B., \newblock Proving and applying program transformations expressed with second-order patterns, \newblock {\em Acta Inf. {\bf 11}\/} (1978), 31--55 \bibitem{mural} Jones, C.~B., Jones, K.~D., Lindsay, P.~A., Moore, R., \newblock {\em Mural: A Formal Development Support System}, \newblock Springer, 1991 \bibitem{alf} Magnusson, L., {Nordstr\"om}, B., \newblock The {ALF} proof editor and its proof engine, \newblock In {\em Types for Proofs and Programs: International Workshop {TYPES '93}\/} (published 1994), Springer, pp.~213--237, \newblock LNCS 806 \bibitem{mw81} Manna, Z., Waldinger, R., \newblock Deductive synthesis of the unification algorithm, \newblock {\em Sci. Comput. Programming {\bf 1}}, 1 (1981), 5--48 \bibitem{martin-nipkow} Martin, U., Nipkow, T., \newblock Ordered rewriting and confluence, \newblock In {\em 10th Conf. Auto. Deduct.\/} (1990), M.~E. Stickel, Ed., Springer, pp.~366--380, \newblock LNCS 449 \bibitem{martinlof84} Martin-L\"of, P., \newblock {\em Intuitionistic type theory}, \newblock Bibliopolis, 1984 \bibitem{melham89} Melham, T.~F., \newblock Automating recursive type definitions in higher order logic, \newblock In {\em Current Trends in Hardware Verification and Automated Theorem Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989, pp.~341--386 \bibitem{miller-mixed} Miller, D., \newblock Unification under a mixed prefix, \newblock {\em J. Symb. Comput. {\bf 14}}, 4 (1992), 321--358 \bibitem{milner-coind} Milner, R., Tofte, M., \newblock Co-induction in relational semantics, \newblock {\em Theoretical Comput. Sci. {\bf 87}\/} (1991), 209--220 \bibitem{nipkow-prehofer} Nipkow, T., Prehofer, C., \newblock Type checking type classes, \newblock In {\em 20th Princ. Prog. Lang.\/} (1993), ACM Press, pp.~409--418, \newblock Revised version to appear in \bgroup\em J. Func. Prog.\egroup \bibitem{noel} {No\"el}, P., \newblock Experimenting with {Isabelle} in {ZF} set theory, \newblock {\em J. Auto. Reas. {\bf 10}}, 1 (1993), 15--58 \bibitem{nordstrom90} {Nordstr\"om}, B., Petersson, K., Smith, J., \newblock {\em Programming in {Martin-L\"of}'s Type Theory. An Introduction}, \newblock Oxford University Press, 1990 \bibitem{paulin92} Paulin-Mohring, C., \newblock Inductive definitions in the system {Coq}: Rules and properties, \newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec. 1992 \bibitem{paulson85} Paulson, L.~C., \newblock Verifying the unification algorithm in {LCF}, \newblock {\em Sci. Comput. Programming {\bf 5}\/} (1985), 143--170 \bibitem{paulson87} Paulson, L.~C., \newblock {\em Logic and Computation: Interactive proof with Cambridge LCF}, \newblock Cambridge Univ. Press, 1987 \bibitem{paulson89} Paulson, L.~C., \newblock The foundation of a generic theorem prover, \newblock {\em J. Auto. Reas. {\bf 5}}, 3 (1989), 363--397 \bibitem{paulson-COLOG} Paulson, L.~C., \newblock A formulation of the simple theory of types (for {Isabelle}), \newblock In {\em COLOG-88: International Conference on Computer Logic\/} (Tallinn, 1990), P.~Martin-L\"of, G.~Mints, Eds., Estonian Academy of Sciences, Springer, \newblock LNCS 417 \bibitem{paulson700} Paulson, L.~C., \newblock {Isabelle}: The next 700 theorem provers, \newblock In {\em Logic and Computer Science}, P.~Odifreddi, Ed. Academic Press, 1990, pp.~361--386 \bibitem{paulson91} Paulson, L.~C., \newblock {\em {ML} for the Working Programmer}, \newblock Cambridge Univ. Press, 1991 \bibitem{paulson-coind} Paulson, L.~C., \newblock Co-induction and co-recursion in higher-order logic, \newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993 \bibitem{paulson-fixedpt} Paulson, L.~C., \newblock A fixedpoint approach to implementing (co)inductive definitions, \newblock Tech. Rep. 320, Comp. Lab., Univ. Cambridge, Dec. 1993 \bibitem{paulson-set-I} Paulson, L.~C., \newblock Set theory for verification: {I}. {From} foundations to functions, \newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389 \bibitem{paulson-set-II} Paulson, L.~C., \newblock Set theory for verification: {II}. {Induction} and recursion, \newblock Tech. Rep. 312, Comp. Lab., Univ. Cambridge, 1993 \bibitem{paulson-final} Paulson, L.~C., \newblock A concrete final coalgebra theorem for {ZF} set theory, \newblock Tech. rep., Comp. Lab., Univ. Cambridge, 1994 \bibitem{pelletier86} Pelletier, F.~J., \newblock Seventy-five problems for testing automatic theorem provers, \newblock {\em J. Auto. Reas. {\bf 2}\/} (1986), 191--216, \newblock Errata, JAR 4 (1988), 235--236 \bibitem{plaisted90} Plaisted, D.~A., \newblock A sequent-style model elimination strategy and a positive refinement, \newblock {\em J. Auto. Reas. {\bf 6}}, 4 (1990), 389--402 \bibitem{quaife92} Quaife, A., \newblock Automated deduction in {von Neumann-Bernays-G\"odel} set theory, \newblock {\em J. Auto. Reas. {\bf 8}}, 1 (1992), 91--147 \bibitem{sawamura92} Sawamura, H., Minami, T., Ohashi, K., \newblock Proof methods based on sheet of thought in {EUODHILOS}, \newblock Research Report IIAS-RR-92-6E, International Institute for Advanced Study of Social Information Science, Fujitsu Laboratories, 1992 \bibitem{suppes72} Suppes, P., \newblock {\em Axiomatic Set Theory}, \newblock Dover, 1972 \bibitem{takeuti87} Takeuti, G., \newblock {\em Proof Theory}, 2nd~ed., \newblock North Holland, 1987 \bibitem{thompson91} Thompson, S., \newblock {\em Type Theory and Functional Programming}, \newblock Addison-Wesley, 1991 \bibitem{principia} Whitehead, A.~N., Russell, B., \newblock {\em Principia Mathematica}, \newblock Cambridge Univ. Press, 1962, \newblock Paperback edition to *56, abridged from the 2nd edition (1927) \bibitem{wos-bledsoe} Wos, L., \newblock Automated reasoning and {Bledsoe's} dream for the field, \newblock In {\em Automated Reasoning: Essays in Honor of {Woody Bledsoe}}, R.~S. Boyer, Ed. Kluwer Academic Publishers, 1991, pp.~297--342 \end{thebibliography}