<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML>
<HEAD>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<TITLE>HOL/Hahn_Banach/README</TITLE>
</HEAD>
<BODY>
<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>
Author: Gertrud Bauer, Technische Universität München<P>
This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
following H. Heuser, Funktionalanalysis, p. 228 -232.
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
It is a conclusion of Zorn's lemma.<P>
Two different formaulations of the theorem are presented, one for general real vectorspaces
and its application to normed vectorspaces. <P>
The theorem says, that every continous linearform, defined on arbitrary subspaces
(not only one-dimensional subspaces), can be extended to a continous linearform on
the whole vectorspace.
<HR>
<ADDRESS>
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
</ADDRESS>
</BODY>
</HTML>