src/HOL/Tools/Function/pattern_split.ML
author wenzelm
Sun, 07 Mar 2010 11:57:16 +0100
changeset 35624 c4e29a0bb8c1
parent 34232 36a2a3029fd3
child 41114 f9ae7c2abf7e
permissions -rw-r--r--
modernized structure Local_Defs;

(*  Title:      HOL/Tools/Function/pattern_split.ML
    Author:     Alexander Krauss, TU Muenchen

Fairly ad-hoc pattern splitting.

*)

signature FUNCTION_SPLIT =
sig
  val split_some_equations :
      Proof.context -> (bool * term) list -> term list list

  val split_all_equations :
      Proof.context -> term list -> term list list
end

structure Function_Split : FUNCTION_SPLIT =
struct

open Function_Lib

fun new_var ctx vs T =
  let
    val [v] = Variable.variant_frees ctx vs [("v", T)]
  in
    (Free v :: vs, Free v)
  end

fun saturate ctx vs t =
  fold (fn T => fn (vs, t) => new_var ctx vs T |> apsnd (curry op $ t))
    (binder_types (fastype_of t)) (vs, t)


(* This is copied from "pat_completeness.ML" *)
fun inst_constrs_of thy (T as Type (name, _)) =
  map (fn (Cn,CT) =>
    Envir.subst_term_types (Sign.typ_match thy (body_type CT, T) Vartab.empty) (Const (Cn, CT)))
    (the (Datatype.get_constrs thy name))
  | inst_constrs_of thy T = raise TYPE ("inst_constrs_of", [T], [])


fun join ((vs1,sub1), (vs2,sub2)) = (merge (op aconv) (vs1,vs2), sub1 @ sub2)
fun join_product (xs, ys) = map_product (curry join) xs ys

exception DISJ

fun pattern_subtract_subst ctx vs t t' =
  let
    exception DISJ
    fun pattern_subtract_subst_aux vs _ (Free v2) = []
      | pattern_subtract_subst_aux vs (v as (Free (_, T))) t' =
      let
        fun foo constr =
          let
            val (vs', t) = saturate ctx vs constr
            val substs = pattern_subtract_subst ctx vs' t t'
          in
            map (fn (vs, subst) => (vs, (v,t)::subst)) substs
          end
      in
        maps foo (inst_constrs_of (ProofContext.theory_of ctx) T)
      end
     | pattern_subtract_subst_aux vs t t' =
     let
       val (C, ps) = strip_comb t
       val (C', qs) = strip_comb t'
     in
       if C = C'
       then flat (map2 (pattern_subtract_subst_aux vs) ps qs)
       else raise DISJ
     end
  in
    pattern_subtract_subst_aux vs t t'
    handle DISJ => [(vs, [])]
  end

(* p - q *)
fun pattern_subtract ctx eq2 eq1 =
  let
    val thy = ProofContext.theory_of ctx

    val (vs, feq1 as (_ $ (_ $ lhs1 $ _))) = dest_all_all eq1
    val (_,  _ $ (_ $ lhs2 $ _)) = dest_all_all eq2

    val substs = pattern_subtract_subst ctx vs lhs1 lhs2

    fun instantiate (vs', sigma) =
      let
        val t = Pattern.rewrite_term thy sigma [] feq1
      in
        fold_rev Logic.all (inter (op =) vs' (map Free (frees_in_term ctx t))) t
      end
  in
    map instantiate substs
  end

(* ps - p' *)
fun pattern_subtract_from_many ctx p'=
  maps (pattern_subtract ctx p')

(* in reverse order *)
fun pattern_subtract_many ctx ps' =
  fold_rev (pattern_subtract_from_many ctx) ps'

fun split_some_equations ctx eqns =
  let
    fun split_aux prev [] = []
      | split_aux prev ((true, eq) :: es) =
        pattern_subtract_many ctx prev [eq] :: split_aux (eq :: prev) es
      | split_aux prev ((false, eq) :: es) =
        [eq] :: split_aux (eq :: prev) es
  in
    split_aux [] eqns
  end

fun split_all_equations ctx =
  split_some_equations ctx o map (pair true)


end